ASU engineers break solar cell record by Staff Writers Tempe AZ (SPX) Jan 14, 2019
Arizona State University researchers continue to break solar cell efficiency records in an effort to harness the sun's energy more economically as a renewable source for electricity. Last year, Assistant Professor Zachary Holman and Assistant Research Professor Zhengshan "Jason" Yu in ASU's Ira A. Fulton Schools of Engineering set a world record of 23.6 percent efficiency for a tandem solar cell stacked with perovskite and silicon. The number was a few percentage points shy of the theoretical efficiency limit for silicon solar cells alone. Now, the team improves upon the record by nearly two percentage points, to 25.4 percent, in a joint project with researchers at the University of Nebraska-Lincoln, predicting they'll be nearing 30 percent tandem efficiency within two years. "The cost of solar electricity is largely driven by the efficiency of the panels installed," Holman said. "So, the increase in cell efficiency that we've demonstrated has the potential to lower the cost of solar energy, which will in turn mean that more solar panels will be installed." The results of a paper recently published in Joule, a Cell Press journal, outline how researchers achieved a new record by adding chemicals to the perovskite precursor solution. While spinning the precursor solution on top of a silicon cell, the additives increase the grain size of the perovskite, enhancing its photovoltaic characteristics and resulting in a higher open-circuit voltage of the perovskite/silicon tandem solar cell. In other words, it increases the maximum voltage that the solar cell outputs. "Based on our previous 23.6 percent tandem with a voltage of only 1.65 volts, we saw a huge opportunity for higher voltage to get higher efficiency," said Yu. "The 1.80 volts open-circuit voltage of the new tandem is the highest demonstrated, making it one of the most efficient perovskite/silicon tandem cells in the world." Silicon solar cells make up 95 percent of the solar panels made today. The perovskite/silicon tandem has the potential to transform mainstream silicon technology and support the U.S. Department of Energy's SunShot Initiative to cut the cost of solar-generated electricity by half between 2020 and 2030. At the cost target of $0.03 per kilowatt hour, solar electricity would be among the least expensive options for new power generation. Holman cites a study that found in the business-as-usual scenario that 5 percent of U.S. electricity will be generated by solar in 2030. If the cost is reduced to the targeted $0.03 per kilowatt hour, that number goes up to 17 percent. This would result in a reduction in carbon dioxide emissions of billions of tons. The interdisciplinary team of chemists, device physicists, electrical engineers and material scientists are now turning their attention to the other two solar cell parameters that determine efficiency - short-circuit current and fill factor - in an effort to exceed the maximum theoretical efficiency of a silicon solar cell. The team's research is laying the foundation for the commercialization of perovskite/silicon tandem technology. "This is a big advancement of ASU's cutting-edge research on silicon-based tandem solar cells," Yu said. "Once the efficiency gain is big enough to justify the add-on cost of the additional perovskite layer, we envision it would be first adopted by the residential and commercial markets, which have higher balance-of-system costs." The team envisions its tandem solar cells will be on roofs in approximately 10 years. In support of this and related research, Holman and Yu were recently awarded $2.5 million from the Department of Energy's Solar Energy Technologies Office to develop characterization tools that will allow the team to pinpoint losses in perovskite solar cells and use a new deposition technique to minimize short-circuit current and fill factor losses to improve solar cell efficiency. The knowledge and development gained from the SETO awards will benefit tandem solar cell research in the future.
NREL details great potential for floating PV systems Golden CO (SPX) Jan 09, 2019 National Renewable Energy Laboratory (NREL) researchers estimate that installing floating solar photovoltaics on the more than 24,000 man-made U.S. reservoirs could generate about 10 percent of the nation's annual electricity production. Their findings, published in the journal Environmental Science and Technology, reveal for the first time the potential for floating PV to produce electricity in the United States. While the United States was the first to demonstrate floating PV panels - with ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |