A flaky option boosts organic solar cells by Staff Writers Thuwal, Saudi Arabia (SPX) Dec 19, 2019
An inexpensive material, made from tungsten disulfide flakes just a few atoms thick, has helped to improve the performance of organic solar cells1. The discovery by KAUST researchers could be an important step toward bringing these photovoltaic cells into wider use for generating clean electricity. Most solar cells use silicon to absorb light and convert its energy into electricity. But carbon-based semiconductor molecules, used in organic photovoltaics (OPVs), offer some distinct advantages over silicon. OPVs tend to be flexible, for example, which means they could be manufactured at a large scale using low-cost roll-to-roll printing. But the best OPVs convert about 16-17 percent of the light they capture into electrical power, well short of commercial silicon cells that exceed 20 percent. Thomas D. Anthopoulos, and colleagues at the KAUST Solar Center, have estimated that OPVs could rival that performance if certain parts of the cell were improved2. When light hits the semiconductor, it frees electrons from the material and leaves positively charged holes. Electrons and holes are gathered up by different layers on opposite faces of the semiconductor and delivered to the cell's electrodes to generate a current. The leading hole transporter is a polymer called PEDOT:PSS, but it is acidic and absorbs moisture from the air, which degrades other materials in the solar cell. Anthopoulos's interdisciplinary team has now developed a hole-transporting layer made from flakes of a 2D material, tungsten disulfide. The researchers used ultrasound to tear the flakes off powdered tungsten disulfide suspended in a mixture of water and ethanol. This sonication method is inexpensive and easy to scale up, and the flakes can be spread onto an electrode using a simple and widely used spin-coating process. The team fabricated several OPVs this way, and the best had a power conversion efficiency of 17 percent, which is the highest for any OPV using a 2D material as a hole transporter and among the highest for any OPV. "We were very surprised to reach 17 percent," says Yuanbao Lin, a Ph.D. student on the team. "We feel this is just the beginning and there is significant room for performance improvement." The team found that the tungsten disulfide layer has a lower resistance than PEDOT:PSS and is also better at gathering holes than its rival, leading to improved performance. "Our immediate goal is to push the efficiency of our organic solar cells well beyond 17 percent and toward our theoretically predicted limits," says Anthopoulos. "We also aim to study the stability of these high-efficiency organic solar cells."
Largest solar-covered parking garage in St Louse opens St. Louis MO (SPX) Dec 17, 2019 Ameren Missouri and BJC Healthcare teamed up to build a solar energy generation facility atop the BJC parking garage located on Duncan Avenue, St. Louis. BJC Healthcare's President and CEO Rich Liekweg has stated, "[we are] known for innovation in health care, we also seek to partner with others in ways that promise improvements and progress for our regions." Michael Moehn, Chairman and President of Ameren Missouri noted it as an "innovative program [...] the first of its kind in St. Louis", commi ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |