Artificial transpiration for solar water purification by Staff Writers Beijing, China (SPX) Jun 05, 2017
Recently, solar steam and vapor generation is attracting a lot of attention with promising prospect in desalination, sterilization and chemical purification. However, in all the previous designs, because of the minimized optical loss and heat conduction loss, losses related to convection and conduction start to dominant. Therefore, it becomes critical to simultaneous minimize the losses related to radiation, convection and conduction simultaneously in order to achieve optimum solar steam performance and enable widespread applications. In research reported in the National Science Review (NSR), Zhu group at Nanjing University, China has provided a new concept "artificial transpiration" with a graphene oxide based 3D hollow cone structure (Fig. 1). In this unique 3D artificial transpiration device, 1D water path was used to obtain efficient water supply and suppressed conduction loss at the same time. The radiation and convection losses were also minimized by lowering absorber temperature due to its increased evaporation surface area and carefully designed morphology. As a result, this device enable over 85% solar vapor efficiency under one sun irradiation without external thermal insulation and optical supporting systems. Another feature in this 3D artificial transpiration device is the ability to collect more sunlight throughout the day, compared with a 2D flat horizontal device. In contrast to the fixed, simulated sun light used in the lab, the sun is constantly changing its position in the sky. Furthermore, large portion of the sunlight (10-50%) is diffusive, arriving to the receiver from all directions. The results show that 3D absorption structure can absorb more light (about ~24%) than 2D devices which is beneficial to real world applications. It is also demonstrated that the artificial transpiration device can enable effective water treatment through two pathways, producing clean water condensed from vapor and recycling heavy metals. The extracted water from the condensed vapor is pure enough to meet WHO drinking water standards, even starting with waste water containing high concentrations of Cu2+, Cd2+, Pb2+ and Zn2+ (5000 mg/L, 5000 times higher than WHO drinking water standards). Meanwhile, the heavy metals as Au, Cu can be recovered. Therefore, this artificial transpiration device provide a complementary approach for efficient, effective and portable solar water treatment. Research paper: "Three-dimensional artificial transpiration for efficient solar waste water treatment" Natl Sci Rev 2017, DOI: 10.1093/nsr/nwx051
Munich, Germany (SPX) May 31, 2017 At this week's Intersolar Europe, imec, the world-leading research and innovation hub in nano-electronics, energy, and digital technology, and partner in EnergyVille, will introduce simulation software that accurately predicts the daily energy yield of solar cells and solar modules under varying meteorological and irradiation conditions. Imec's model combines optical, thermal and electrica ... read more Related Links Science China Press All About Solar Energy at SolarDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |