Solar Energy News  
SOLAR DAILY
Better Performance And Flexibility For Solar Thermal Power Plants

The German Aerospace Center (DLR) and Endesa test direct solar steam generation and energy storage in this pilot plant in Carboneras, located in southern Spain. In this type of solar power plant, steam is produced directly from concentrated solar radiation and used to drive a generator. The highlight of this facility is a new system that efficiently stores energy, both as sensible and latent heat. The stored energy can be used to generate electricity even at night. Credit: DLR
by Staff Writers
Bonn, Germany (SPX) Apr 04, 2011
On 31 March 2011 the German Aerospace Center and Spanish utility company Endesa inaugurated a direct solar steam generation and energy storage pilot plant at Carboneras, located in southern Spain. In this type of solar power plant, steam is produced directly from concentrated solar radiation and used to drive a generator.

The highlight of this facility is a new system that efficiently stores energy, both as sensible heat (where energy is accumulated as the temperature of the storage medium increases) and latent heat (where energy is accumulated as the storage medium changes phase from solid to liquid). The stored energy can be used to generate electricity even at night.

"This pilot facility is an important milestone in making solar-thermal power plants more efficient and cost-effective. Companies in the industry are very interested in both the new process of direct evaporation and efficient latent heat storage," said Ulrich Wagner, DLR Executive Board Member for Energy and Transport, at the opening. DLR and Endesa constructed the pilot facility with partners Flagsol GmbH, MAN-Ferrostaal, Senior Berghofer GmbH, SCHOTT Solar CSP GmbH, Milenio Solar S.A. and Ed. Zublin AG.

Higher temperatures lead to increased efficiency - steam at 500 degrees Celsius
In parabolic trough solar power plants, sunlight is concentrated onto a receiver tube located at the focus of the parabolic mirrors and converted into heat. In existing power plants, synthetic oil flows through these receivers and is heated to about 390 degrees Celsius. The heated oil heats water, producing steam that drives a turbine to generate electricity.

In the pilot facility at Carboneras, the steam is generated directly within the receivers. The receiver tubes are under a pressure of up to 120 bar, producing superheated steam at a temperature of 500 degrees Celsius. The use of water as the direct working medium in the solar collectors allows a higher process temperature and increases the efficiency of the power plant. Therefore, direct solar steam generation is an opportunity to reduce the cost of solar thermal power generation.

"Our pilot facility is designed for testing and improving both the system as a whole and its individual components," said project leader Markus Eck from the DLR Facility for Solar Research, outlining the challenges presented by the system. For example, the flexible pipe connections in the system, which are needed to enable the parabolic troughs to rotate so they can track the Sun, are being tested.

"The joints must withstand a pressure of 120 bar and remain absolutely steam tight." The receivers set up at Carboneras were developed and manufactured by SCHOTT Solar CSP GmbH and the flexible pipe connections by Senior-Berghofer GmbH.

Energy storage technology for direct steam generation
A big advantage of solar thermal power plants is that they can store energy in the form of heat. This means that the facilities can produce power to meet demand during cloudy weather or at night. Direct solar steam generation requires storage technologies that are adapted to suit this new technique.

An important requirement for these technologies is that they efficiently store the large amount of energy released during the condensation of steam, a process that occurs at constant temperature. In the pilot facility now in operation, this challenge is met using a combined storage system with storage units for both sensible and latent heat.

The salt-based latent heat storage system works using a phase transition. At 305 degrees Celsius, the salt absorbs energy by transitioning from a solid to a liquid state.

"The advantage of such a system is its capacity to store large amounts of energy in a small volume and with a minimal temperature change. The energy in the system can be transferred and absorbed very efficiently by phase transition at a constant temperature," explained Doerte Laing, Thermal Energy Storage Research Area Manager at the DLR Institute of Technical Thermodynamics.

"This pilot facility gives us the opportunity to test the new combined storage system in any required mode of operation under well-defined conditions and to gain operational experience. The demand from industry for an efficient storage system for direct solar steam generation plants is very high."

The storage system developed by DLR researchers is currently the largest high-temperature latent heat storage facility in the world. The sensible heat from the superheated steam is absorbed by a concrete storage system, which was developed jointly by DLR and Ed. Zublin AG.

Researchers plan to use the pilot facility until the end of 2011 to provide functional validation of the key components of the storage system, receivers and flexible pipe connections. The project is supported by the German Federal Environment Ministry (Bundesumweltministerium; BMU) and the Spanish Corporacion Tecnologica de Andalucia (CTA).



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
DLR Solar Research
All About Solar Energy at SolarDaily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


SOLAR DAILY
Mecklenburg County Tapping Into Solar Power
Charlotte NC (SPX) Apr 01, 2011
Mecklenburg County is embarking on an extensive solar water heating project spread across several county-owned buildings in Charlotte. The ambitious plan will place 141 solar thermal collectors on the rooftops of five buildings, including 64 collectors at Mecklenburg County Jail North. "We're proud to be taking this step forward in the environmental sustainability of our facilities," Meckl ... read more







SOLAR DAILY
Boeing Issues First Latin American Study On Jatropha Sustainability

Key Plant Traits Yield More Sugar For Biofuels

Boeing sees new potential in plant biofuel

Camelina-Based Biofuel Breaks Sound Barrier

SOLAR DAILY
Atmospheric Science Through Robotic Aircraft

Future Engineers Unite At Robotics Competition

Goodbye To Blind Spots For Machine Operators

How Can Robots Get Our Attention

SOLAR DAILY
Manitoba wind farm comes online

Alstom Announces Commercial Operation Of First North American Wind Farms

Vestas unveils new offshore turbine

US hopes to resolve China wind turbine rift

SOLAR DAILY
Natural gas for U.S. vehicles?

Toyota says some US shutdowns 'inevitable'

Japan's new vehicle sales plunge after quake

S. Korea carmaker to cut output over Japan quake

SOLAR DAILY
Cuba to drill five new oil wells by 2013

Using River Water And Salty Ocean Water To Generate Electricity

First Practical Nanogenerator Produces Electricity With Pinch Of The Fingers

Oil prices diverge after China hikes rates

SOLAR DAILY
New Method For Preparation Of High-Energy Carbon-Carbon Double Bonds

CO2 Pressure Dissipates In Underground Reservoirs

Berkeley Lab Scientists Control Light Scattering In Graphene

New High-Resolution Carbon Mapping Techniques Provide More Accurate Results

SOLAR DAILY
Developing Commercial Hydrokinetic Energy Projects

New Zealand to slash emissions by half

US energy future hazy on Japan, environment fears

Report: China leads in low-carbon energy

SOLAR DAILY
Macedonia plants three million trees to revive forests

Brazil banks sued for encouraging deforestation

Russian Boreal Forests Undergoing Vegetation Change

Surprise! Biodiversity And Resource Use May Co-Exist In Tropical Forests


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement