Subscribe free to our newsletters via your
. Solar Energy News .




SOLAR DAILY
Cheaper silicon means cheaper solar cells
by Staff Writers
Trondheim, Norway (SPX) Oct 24, 2014


By using silicon fibres coated in glass, researchers have been able to make solar cells from silicon that is 1000 times less pure, and thus much cheaper, than the current industry standard. Image courtesy Fredrik A. Martinsen.

A new method of producing solar cells could reduce the amount of silicon per unit area by 90 per cent compared to the current standard. With the high prices of pure silicon, this will help cut the cost of solar power.

"We're using less expensive raw materials, and smaller amounts of them, we have fewer production steps and our total energy consumption is potentially lower," explain PhD candidate Fredrik Martinsen and Professor Ursula Gibson, from NTNU's Department of Physics.

They recently published their technique in Scientific Reports. Their processing technique allows them to make solar cells from silicon that is 1000 times less pure, and thus less expensive, than the current industry standard.

Glass fibres with a silicon core
The researchers' solar cells are composed of silicon fibres coated in glass. A silicon core is inserted into a glass tube about 3 mm in diameter. This is then heated up, so that the silicon melts and the glass softens. The tube is stretched out into a thin glass fibre filled with silicon. The process of heating and stretching makes the fibre up to 100 times thinner.

This is the widely accepted industrial method used to produce fibre optic cables. But researchers at the Department of Physics at NTNU, working with collaborators at Clemson University in the USA, are the first to use silicon-core fibres made this way in solar cells. The active part of these solar cells is the silicon core, which has a diameter of about 100 micrometres

Lower energy consumption
This production method also enabled them to solve another problem: traditional solar cells require pure silicon. The process of manufacturing a pure silicon wafers is laborious, energy-intensive and expensive.

"We can use relatively dirty silicon, and the purification occurs naturally as part of the process of melting and re-solidifying in fibre form. This means that you save energy, and several production steps."

It is estimated that it will take roughly one-third of the energy to produce solar cells with this method compared to the traditional approach of producing silicon wafers.

Gibson has worked for several years to combine purification and solar cell production. She got the idea for the project after reading an article on silicon core fibres by John Ballato at Clemson University in South Carolina, who is at the forefront of research in fibre optics materials development.

"I saw that the method he described could also be used for solar cells," she said, "and we developed a key technique at NTNU that improved the fibre quality."

Gibson and her research group began to work with Ballato, who is a co-author of the article published in Scientific Reports.

Silicon rods
The new type of solar cells are based on the vertical rod radial-junction design, which is a relatively new approach. The design uses less pure silicon than a planar solar cell, Martinsen explains, who then launches into a crash-course on the inner workings of a solar cell: photons of different wavelengths are absorbed in different layers of the silicon wafer. They generate free charges, or charge carriers, which are then separated to provide electrical energy.

These charges need to be close to the surface, close to the electrodes and to the p-n junction to be captured. The p-n junction is the active region in the device, where different types of charge carriers are separated. If the charge is not captured, the energy dissipates and goes to heating up the solar cell itself.

In a traditional solar cell, the journey from where a charge is generated to the surface can be quite long. This means that highly purified silicon is required. But with silicon fibres in glass tubes, there is a junction all the way around the fibre. The distance from where the charge is generated to where it is captured is quite short. Charge carriers can be captured effectively, even when using impure silicon.

"The vertical rod design still isn't common in commercial use. Currently, silicon rods are produced using advanced and expensive nano-techniques that are difficult to scale," Martinsen says. "But we're using a tried and true industrial bulk process, which can make production a lot cheaper."

Potential
The power produced by prototype cells is not yet up to commercial standards. Contemporary solar cells have an efficiency of about 18 per cent. The prototype created by NTNU researchers has only reached about 3.6 per cent power output. Gibson and Martinsen still have faith in the potential of this production method, and are working to improve the design and fabrication processes.

"These are the first solar cells produced this way, using impure silicon. So it isn't surprising that the power output isn't very high," says Martinsen.

"It's a little unfair to compare our method to conventional solar cells, which have had 40 years to fine-tune the entire production process. We've had a steep learning curve, but not all the steps of our process are fully developed yet. We're the first people to show that you can make solar cells this way. The results are published, and the process is set in motion."

The next step is to refine production, make larger and more effective solar cells, and couple multiple cells together.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Gemini
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR DAILY
Galenfeha Completes Successful Testing Of Solar Power Station
Bedford TX (SPX) Oct 22, 2014
Galenfeha is pleased to announce that the Company has completed successful field testing of its portable, solar regenerated power supply station. Galenfeha conducted field-testing for a major petroleum production company in the Haynesville shale area of Louisiana. The company's client was seeking a viable solution to power a chemical injection pump station. The location historically ... read more


SOLAR DAILY
Boosting Biogasoline Production in Microbes

Boeing and Chinese firm to turn "gutter oil" into jet fuel

Molecular movement within mesoporous nanoparticles modeled

New Discovery Will Enhance yield and quality of Cereal and Bioenergy Crops

SOLAR DAILY
Google teams with Oxford to teach machines to think

Japan toymaker unveils tiny talking, singing humanoid

New TALON tactical robot makes debut

An android opera: Japan's Shibuya plots new era of robot music

SOLAR DAILY
Off-grid German village banks on wind, sun, pig manure

Wind turbines briefly outpace nuclear power plants in U.K.

British study raises questions about wind energy reliability

UAE's Masdar to build $125-million wind farm in Oman

SOLAR DAILY
Renault chief sees Europe auto market slowing in 2015

Report: Better mpg, switch in fuels means lower expense

Dongfeng, Huawei partner for Internet-enabled cars

Tritium targets Europe for its EV fast charger

SOLAR DAILY
AREVA develops a smart network for industrial site management

Chinese power companies pursue smart grids

Beijing's focus on coal lost in haze of smog: experts

Lockheed Martin claims nuclear energy breakthrough

SOLAR DAILY
Postcards from the plasma edge

Using radio waves to control the density in a fusion plasma

Calming the plasma edge: The tail that wags the dog

Areva names number two Knoche as interim CEO

SOLAR DAILY
Durable foul-release coatings control invasive mussel attachment

CO2 emissions up in U.S. because of polar vortex

New policymaking tool for shift to renewable energy

Climate: EU set for 24% emissions cut by 2020

SOLAR DAILY
Mature forests store nitrogen in soil

Global consumption driving tropical deforestation

Sean Parker to pay fines and build app for Big Sur wedding damages

First Detailed Map Of Carbon Stocks In Mexico Forests Unveiled




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.