Solar Energy News  
SOLAR DAILY
Columbia Chemists Find Key to Manufacturing More Efficient Solar Cells
by Staff Writers
New York NY (SPX) Sep 28, 2016


A new class of solar cells. Image courtesy Nicoletta Barolini.

In a discovery that could have profound implications for future energy policy, Columbia scientists have demonstrated it is possible to manufacture solar cells that are far more efficient than existing silicon energy cells by using a new kind of material, a development that could help reduce fossil fuel consumption.

The team, led by Xiaoyang Zhu, a professor of Chemistry at Columbia University, focused its efforts on a new class of solar cell ingredients known as Hybrid Organic Inorganic Perovskites (HOIPs). Their results, reported in the prestigious journal Science, also explain why these new materials are so much more efficient than traditional solar cells-solving a mystery that will likely prompt scientists and engineers to begin inventing new solar materials with similar properties in the years ahead.

"The need for renewable energy has motivated extensive research into solar cell technologies that are economically competitive with burning fossil fuel," Zhu says. "Among the materials being explored for next generation solar cells, HOIPs have emerged a superstar. Until now no one has been able to explain why they work so well, and how much better we might make them. We now know it's possible to make HOIP-based solar cells even more efficient than anyone thought possible."

Solar cells are what turn sunlight into electricity. Also known as photovoltaic cells, these semiconductors are most frequently made from thin layers of silicon that transmit energy across its structure, turning it into DC current.

Silicon panels, which currently dominate the market for solar panels, must have a purity of 99.999 percent and are notoriously fragile and expensive to manufacture. Even a microscopic defect-such as misplaced, missing or extra ions-in this crystalline structure can exert a powerful pull on the charges the cells generate when they absorb sunlight, dissipating those charges before they can be transformed into electrical current.

In 2009, Japanese scientists demonstrated it was possible to build solar cells out of HOIPs, and that these cells could harvest energy from sunlight even when the crystals had a significant number of defects. Because they don't need to be pristine, HOIPs can be produced on a large scale and at low cost. The Columbia team has been investigating HOIPs since 2014. Their findings could help boost the use of solar power, a priority in the age of global warming.

Over the last seven years, scientists have managed to increase the efficiency with which HOIPs can convert solar energy into electricity, to 22 percent from 4 percent. By contrast, it took researchers more than six decades to create silicon cells and bring them to their current level, and even now silicon cells can convert no more than about 25 percent of the sun's energy into electrical current.

This discovery, Zhu said, meant that "scientists have only just begun to tap the potential of HOIPs to convert the sun's energy into electricity."

Theorists long ago demonstrated that the maximum efficiency silicon solar cells might ever reach- the percentage of energy in sunlight that might be converted to electricity we can use-is roughly 33 percent.

It takes hundreds of nanoseconds for energized electrons to move from the part of a solar cell that infuses them with the sun's energy, to the part of the cell that harvests the energy and converts it into electricity that can ultimately be fed into a power grid. During this migration across the solar cell, the energized electrons quickly dissipate their excess energy.

But those calculations assume a specific rate of energy loss. The Columbia team discovered that the rate of energy loss is slowed down by over three-orders of magnitude in HOIPs - making it possible for the harvesting of excess electronic energy to increase the efficiency of solar cells.

"We're talking about potentially doubling the efficiency of solar cells," says Prakriti P. Joshi, a Ph.D. student in Zhu's lab who is a coauthor on the paper. "That's really exciting because it opens up a big, big field in engineering." Adds Zhu, "This shows we can push the efficiencies of solar cells much higher than many people thought possible."

After demonstrating this, the team then turned to the next question: what is it about the molecular structure of HOIPs that gives them their unique properties? How do electrons avoid defects?

They discovered that the same mechanism that slows down the cooling of electron energy also protects the electrons from bumping into defects. This "protection" makes the HOIPs turn a blind eye to the ubiquitous defects in a material developed from room-temperature and solution processing, thus allowing an imperfect material to behave like a perfect semiconductor.

HOIPs contain lead, and are also water soluble, meaning the solar cells could begin to dissolve and leach lead into the environment around them if not carefully protected from the elements.

With the explanation of the mysterious mechanisms that give HOIPs their remarkable efficiencies, Zhu knew, material scientists would likely be able to mimic them with more environmentally-friendly materials.

"Now we can go back and design materials which are environmentally benign and really solve this problem everybody is worried about," Zhu says. "This principle will allow people to start to design new materials for solar energy."

Research paper: Columbia Scientists Unlock Big Perovskite Solar Cell Mystery, Clean Technica, Sept 22, 2016


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Chemistry at Columbia University
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SOLAR DAILY
OPDE begins construction of a new 5MWp solar farm in the UK
Low Bentham UK (SPX) Sep 26, 2016
OPDE is going to begin the construction of a new 5 MWp solar farm near the little municipality of Low Bentham, North Yorkshire County, north of the country. According to the information given by the company, it is expected that the works will begin next October and are to be completed this year. Once connected to the grid, the new plant will generate each year the equivalent energy consump ... read more


SOLAR DAILY
New findings by Stanford chemists could lead to greener methanol production

Liquid Manure Volume Reduced by Half

Can jet fuel be grown on trees?

Boskalis tests sustainable wood-based biofuel for marine fleet

SOLAR DAILY
Tech titans join to study artificial intelligence

Servosila Robotic Arms product line is launched by Servosila

Team of robots learns to work together, without colliding

Stanford-hosted study examines how AI might affect urban life in 2030

SOLAR DAILY
SeaRoc launches SeaHub for communication and logistic data

U.S. governors want more offshore wind support

GM commits to 100 percent renewables

Experts anticipate significant continued reductions in wind energy costs

SOLAR DAILY
VW says to pay US suppliers $1.2 bln over Dieselgate

Low-emissions vehicles cost less to drive, research shows

Paris bans cars along part of River Seine

Renault promises total cooperation in emissions probe

SOLAR DAILY
Closing in on high-temperature superconductivity

Corvus Energy selected to power new environmentally friendly UK hybrid ferry

Carbon-coated iron catalyst structure could lead to more-active fuel cells

Proton diffusion discovery a boost for fuel cell technologies

SOLAR DAILY
Deal signed for giant UK nuclear project

AREVA and Synatom sign a contract for the manufacture of transport and storage casks

South Africa's nuclear programme kicked into touch, again

UN trims nuclear power growth forecasts

SOLAR DAILY
Europe ups energy security ante

NREL releases updated baseline of cost and performance data for electricity generation technologies

Chinese giant to buy Pakistani power company for $1.6 bn

Economy of energy-hungry India may face headwinds

SOLAR DAILY
Gambia announces ban on imported timber, but expert sceptic

Amazon forest fire threatens natives, wildlife in Peru

Borneo loggers swap chainsaws for cheap healthcare

Indonesia, EU, announce historic deal on timber trade









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.