Driving chemical reactions with light by Staff Writers Mainz, Germany (SPX) May 08, 2019
How can chemical reactions be triggered by light, following the example of photosynthesis in nature? This process is still poorly understood. However, researchers from Johannes Gutenberg University Mainz (JGU) in Germany und Rice University in Houston, USA, have now uncovered a major piece of the puzzle. Their findings have been published recently in Science Advances. Trees, bushes and other plants are extremely efficient in converting water and carbon dioxide into oxygen and glucose, a type of sugar, by means of photosynthesis. If we can discover the fundamental physical mechanisms involved and harness them for other general applications, the benefits for mankind could be huge. The energy of sunlight, for example, could be used to generate hydrogen from water as a fuel for automobiles. The technique of utilizing light-driven processes like those involved in photosynthesis in chemical reactions is called photocatalysis.
Plasmons: electrons oscillating in synchrony However, the physical processes involved in photocatalysis involving such nano-antennas have yet to be grasped in detail. The teams at JGU and Rice University have now managed to shed some light on this enigma. Graduate student Benjamin Forster and his supervisor Carsten Sonnichsen have been investigating this process more extensively.
Modifying plasmon resonances Within the cage-like structure of the molecules are two boron atoms. By altering the positions of the boron atoms in the two isomers, the researchers were able to vary the dipole moments, in other words, the spatial charge separation over the cages. This led to an interesting discovery: If they applied the two types of cages to the surface of metal nanoparticles and excited plasmons using light, the plasmons reflected different amounts of light depending on which cage was currently on the surface. In short, the chemical nature of the molecules located on the surface of gold nanoparticles influenced the local resonance of the plasmons because the molecules also alter the electronic structure of the gold nanoparticles.
Teamwork crucial for results Benjamin Forster spent a year funded by the Graduate School of Excellence Materials Science in Mainz (MAINZ) researching at Rice University in Houston with Professor Stephan Link, who has been visiting professor at MAINZ since 2014. Although the funding of the MAINZ Graduate School provided by the German federal and state governments' Excellence Initiative will be ending in October 2019, Mainz University will - in special cases - continue to provide postgraduates with financial support for this kind of long-term stays abroad. This will be organized under the auspices of the Max Planck Graduate Center (MPGC) and in cooperation with the state of Rhineland-Palatinate.
Research Report: "Chemists develop innovative nano-sensors for multiple proteins"
Urbasolar and Swiss electrician AXPO create a European leader in photovoltaic Paris, France (SPX) May 07, 2019 AXPO and Urbasolar Group announce the signing of an acquisition contract of 100% of the latter's securities by AXPO. This operation aims to consolidate and stimulate the growth of Urbasolar which becomes the photovoltaic operator within the Group with the ambition to create a European leader, and secondly for AXPO group to acquire a new competence in its strategy for the development of renewable energies. Urbasolar group, based in Montpellier, is one of the main players in the French photovoltaic ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |