Solar Energy News  
SOLAR DAILY
ELSI scientist constructs artificial photosynthetic cells
by Staff Writers
Tokyo, Japan (SPX) Mar 27, 2019

(up) Schematics of the artificial photosynthetic cell encapsulating artificial organelle consists of ATP synthase and bacteriorhodopsin. The artificial organelle synthesizes ATP by light illumination. The photosynthesized ATP was consumed for transcription, GTP synthesis, or translation. (below) Microscopy image of artificial cell photosynthesizing GFP by light. Bar: 10 um. The membrane of the artificial cell labeled by fluorescent lipid (red). The histogram of fluorescent intensity of the selected artificial cell are shown as inset graph.

A team led by associate professor Yutetsu Kuruma of the Earth-Life Science Institute (ELSI) at Tokyo Institute of Technology has constructed simple artificial cells that can produce chemical energy that helps synthesize parts of the cells themselves. This work marks an important milestone in constructing fully photosynthetic artificial cells, and may shed light on how primordial cells used sunlight as an energy source early in life's history.

Scientists build artificial cells as models of primitive cells, as well as to understand how modern cells function. Many sub-cellular systems have now been built by simply mixing cell components together. However, real living cells construct and organize their own components. It has also been a long time goal of research to build artificial cells that can also synthesize their own constituents using the energy available in the environment.

The Tokyo Tech team combined a cell-free protein synthesis system, which consisted of various biological macromolecules harvested from living cells, and small protein-lipids aggregates called proteoliposomes, which contained the proteins ATP synthase and bacteriorhodopsin, also purified from living cells, inside giant synthetic vesicles.

ATP synthase is a biological protein complex that uses the potential energy difference between the liquid inside a cell and the liquid in the cell's environment to make the molecule adenosine triphosphate (ATP), which is the energy currency of the cell.

Bacteriorhodopsin is a light-harvesting protein from primitive microbes that uses light energy to transport hydrogen ions outside of the cell, thus generating a potential energy difference to help ATP synthase operate. Thus, these artificial cells would be able to use light to make a hydrogen ion gradient that would help make the fuel cells use to run their sub-cellular systems, including making more protein.

Just as the scientists hoped, the photosynthesized ATP was consumed as a substrate for transcription, the process by which biology makes messenger RNA (mRNA) from DNA, and as an energy for translation, the process by which biology makes protein from mRNA.

By also including the genes for parts of the ATP synthase and the light-harvesting bacteriorhodopsin, these processes also eventually drive the synthesis of more bacteriorhodopsin and the constituent proteins of ATP synthase, a few copies of which were included to "jump-start" the proteoliposome. The newly formed bacteriorhodopsin and ATP synthase parts then spontaneously integrated into the artificial photosynthetic organelles and further enhanced ATP photosynthesis activity.

As professor Kuruma states "I have been trying for a long time to construct a living artificial cell, especially focusing on membranes. In this work, our artificial cells were wrapped in lipid membranes, and small membrane structures were encapsulated inside them. In this way, the cell membrane is the most important aspect of forming a cell, and I wanted to show the importance of this point in the study of artificial cell and feedback in origins of life studies."

Kuruma thinks the most impact point of this work is that artificial cells can produce energy to synthesize the parts of the cell itself. This means that the artificial cells could be made to be energetically independent and then it would be possible to construct self-sustaining cells, just like actual biological ones cells.

"The most challenging thing in this work was the photosynthesis of the bacteriorhodopsin and the ATP synthase parts, which are membrane proteins. We tried to photosynthesize a full ATP synthase, which has 8 kinds of component proteins, but we could not because of the low productivity of the cell-free protein synthesis system. But, if it was upgraded, we may photosynthesize the whole 8 kinds component proteins."

Nevertheless, this work demonstrates that a simple biologically inspired system including two kinds of membrane protein is able to supply energy to drive gene expression inside a microcompartment. Thus, primordial cells using sunlight as a primal energy source could have existed early in life's evolution before modern autotrophic cells arose.

The team believes attempts to construct living artificial cells will help understand the transition from non-living to living matter that took place on early Earth and, help develop biology-based devices that can sense light and drive biochemical reactions. These artificial photosynthetic cell systems also help pave the way to constructing energetically independent artificial cells.

Research paper


Related Links
Tokyo Institute of Technology
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Achieving 100 percent renewable energy production
Bethesda MD (SPX) Mar 22, 2019
There is only one country that is close to achieving 100% renewable energy production (for production of electricity). Costa Rica operated 311 consecutive days in 2018 on renewables driven primarily by hydroelectric power production (75%), followed by geothermal power production (15%), then wind power production (5%), solar power production (4%), and a very small sector of biomass power production (less than 1%). Over 99% of Costa Rica's electric power is derived from these five renewable energy s ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Making xylitol and cellulose nanofibers from paper paste

Bright skies for plant-based jet fuels

Plant scraps are the key ingredient in cheap, sustainable jet fuel

Malaysia plants hope for palm oil's future in dwarf trees

SOLAR DAILY
Dynamic hydrogel used to make 'soft robot' components and LEGO-like building blocks

Ankle exoskeleton fits under clothes for potential broad adoption

Using AI to build better human-machine teams

New cell-sized micro robots might make incredible journeys

SOLAR DAILY
SeaPlanner to support marine coordination for Taiwan's Formosa I Offshore Wind Farm

DNV GL to deliver 5-minute energy forecast pilot for Australia's Ararat Wind Farm

E.ON announces start of construction on South Texas windfarm

Improved hybrid models for multi-step wind speed forecasting

SOLAR DAILY
EU should build autos in US to avoid tariffs: Trump

New wheel units could bring vehicle costs down

Lyft revs up for an IPO seeking to raise $2.4bn

Fisker relaunches Tesla rivalry with $40k electric car

SOLAR DAILY
Energy monitor can find electrical failures before they happen

New research shows highest energy density all-solid-state batteries now possible

Speeding the development of fusion power to create unlimited energy on Earth

Advances point the way to smaller, safer batteries

SOLAR DAILY
China to start construction of its 1st floating nuclear power plant

EQUALLE group signs MoU to cooperate on qualification processes

RWE looks to 2019 to complete transformation

Team solves a beta-decay puzzle with advanced nuclear models

SOLAR DAILY
2018 spike in energy demand spells climate trouble: IEA

Forget about coal - broadband is the best bet for rural America

CO2 emissions in developed economies fall due to decreasing fossil fuel and energy use

S.Africa imposes severe power cuts ahead of election

SOLAR DAILY
Bolsonaro says Brazil owes world nothing on environment

USAID and NASA harness science, technology for Amazon sustainability

Floodplain forests under threat

Billions pledged to halt Africa's forest loss









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.