Energy conversion: Optical 'overtones' for solar cells by Staff Writers Munich, Germany (SPX) Apr 20, 2018
NIM scientists from Ludwig-Maximilians-Universitaet (LMU) in Munich have found a new effect regarding the optical excitation of charge carriers in a solar semiconductor. It could facilitate the utilization of infrared light, which is normally lost in solar devices. Semiconductors are nowadays the most prominent materials to convert solar light into usable electric energy. The International Energy Agency (IEA) reported that half a million solar panels were installed every day around the world last year. However, semiconductor-based solar cells still suffer from relatively low energy conversion efficiencies. The reason for that mainly lies in the fact that semiconductors efficiently convert the light from a quite small portion of the solar spectrum into electrical power. The spectral position of this window of light that can be efficiently converted is strongly related to a property of the semiconductor involved (that is, its band-gap). This means that, if the semiconductor is designed to absorb yellow light, longer-wavelength light (such as red and infrared light), will pass through the material without producing currents. Additionally, shorter-wavelength light (green, blue and UV light), that is more energetic than yellow light, will lose its additional amount of energy into heat. Obtaining higher energy conversion efficiencies from semiconductors is therefore still a big challenge.
Perovskite nanocrystals for energy conversion "Multiple photon absorption of long-wavelength light with an energy lower than the semiconductor absorption window is usually very inefficient.", highlights Manzi, first author of the publication in Nature Communications and a student of the NIM graduate program. "I was therefore totally surprised to observe that for specific excitation wavelengths the efficiency of this process becomes drastically enhanced. At the beginning this did not make any sense to us!"
Light and exciton "overtones" in resonance One could draw an analogy to resonance or overtone phenomena in acoustics, commonly used in music instruments. When intense red light impinges on nano-structured perovskite nanocrystals, a process similar to the generation of overtones in a guitar string takes place. The fundamental light wavelength generates higher order optical harmonics, that are overtones whose frequencies are integer multiples of the primary light oscillation. When such a "light overtone" becomes resonant with an overtone of the excitonic band-gap, the energy exchange is enhanced leading to an increased generation of charge carriers or more precisely of multiple excitons at the band gap.
Starting point for further research "The observation of this novel resonance phenomenon for optical excitations in excitonic semiconductors could pave the way for solar cells to more efficiently convert long-wavelength light into usable electric power", adds Prof. Feldmann, the leader of the research team. "This is an exciting new finding with a possible impact for future solar devices. Together with our colleagues from the Research Network "Solar Technologies Go Hybrid" (SolTech), we will now try to develop innovative applications by playing with such overtones."
ESPResSo aims to make perovskite solar cells affordable Leuven, Belgium (SPX) Apr 19, 2018 Imec has been named the coordinator of an ambitious 3-year European Union (EU) funded project, "ESPResSo" (Efficient Structures and Processes for Reliable Perovskite Solar Modules), that gathers known leaders in the field of perovskite PV technology to revolutionize Europe's photovoltaics (PV) industry. The ESPResSo consortium has been granted over 5M euro by the European Union to overcome the limitations of today's state-of-the-art perovskite PV technology, bring perovskite solar cells to the nex ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |