Solar Energy News  
SOLAR DAILY
Even short-lived solar panels can be economically viable
by David L. Chandler for MIT News
Boston MA (SPX) Sep 23, 2019

A new study shows that replacing new solar panels after just 10 or 15 years, using the existing mountings and control systems, can make economic sense, contrary to industry expectations that a 25-year lifetime is necessary.

A new study shows that, contrary to widespread belief within the solar power industry, new kinds of solar cells and panels don't necessarily have to last for 25 to 30 years in order to be economically viable in today's market.

Rather, solar panels with initial lifetimes of as little as 10 years can sometimes make economic sense, even for grid-scale installations - thus potentially opening the door to promising new solar photovoltaic technologies that have been considered insufficiently durable for widespread use.

The new findings are described in a paper in the journal Joule, by Joel Jean, a former MIT postdoc and CEO of startup company Swift Solar; Vladimir Bulovi?, professor of electrical engineering and computer science and director of MIT.nano; and Michael Woodhouse of the National Renewable Energy Laboratory (NREL) in Colorado.

"When you talk to people in the solar field, they say any new solar panel has to last 25 years," Jean says. "If someone comes up with a new technology with a 10-year lifetime, no one is going to look at it. That's considered common knowledge in the field, and it's kind of crippling."

Jean adds that "that's a huge barrier, because you can't prove a 25-year lifetime in a year or two, or even 10." That presumption, he says, has left many promising new technologies stuck on the sidelines, as conventional crystalline silicon technologies overwhelmingly dominate the commercial solar marketplace. But, the researchers found, that does not need to be the case.

"We have to remember that ultimately what people care about is not the cost of the panel; it's the levelized cost of electricity," he says. In other words, it's the actual cost per kilowatt-hour delivered over the system's useful lifetime, including the cost of the panels, inverters, racking, wiring, land, installation labor, permitting, grid interconnection, and other system components, along with ongoing maintenance costs.

Part of the reason that the economics of the solar industry look different today than in the past is that the cost of the panels (also known as modules) has plummeted so far that now, the "balance of system" costs - that is, everything except the panels themselves - exceeds that of the panels. That means that, as long as newer solar panels are electrically and physically compatible with the racking and electrical systems, it can make economic sense to replace the panels with newer, better ones as they become available, while reusing the rest of the system.

"Most of the technology is in the panel, but most of the cost is in the system," Jean says. "Instead of having a system where you install it and then replace everything after 30 years, what if you replace the panels earlier and leave everything else the same? One of the reasons that might work economically is if you're replacing them with more efficient panels," which is likely to be the case as a wide variety of more efficient and lower-cost technologies are being explored around the world.

He says that what the team found in their analysis is that "with some caveats about financing, you can, in theory, get to a competitive cost, because your new panels are getting better, with a lifetime as short as 15 or even 10 years."

Although the costs of solar cells have come down year by year, Bulovi? says, "the expectation that one had to demonstrate a 25-year lifetime for any new solar panel technology has stayed as a tautology. In this study we show that as the solar panels get less expensive and more efficient, the cost balance significantly changes."

He says that one aim of the new paper is to alert the researchers that their new solar inventions can be cost-effective even if relatively short lived, and hence may be adopted and deployed more rapidly than expected. At the same time, he says, investors should know that they stand to make bigger profits by opting for efficient solar technologies that may not have been proven to last as long, knowing that periodically the panels can be replaced by newer, more efficient ones.

"Historical trends show that solar panel technology keeps getting more efficient year after year, and these improvements are bound to continue for years to come," says Bulovi?. Perovskite-based solar cells, for example, when first developed less than a decade ago, had efficiencies of only a few percent. But recently their record performance exceeded 25 percent efficiency, compared to 27 percent for the record silicon cell and about 20 percent for today's standard silicon modules, according to Bulovi?

Importantly, in novel device designs, a perovskite solar cell can be stacked on top of another perovskite, silicon, or thin-film cell, to raise the maximum achievable efficiency limit to over 40 percent, which is well above the 30 percent fundamental limit of today's silicon solar technologies. But perovskites have issues with longevity of operation and have not yet been shown to be able to come close to meeting the 25-year standard.

Bulovi? hopes the study will "shift the paradigm of what has been accepted as a global truth." Up to now, he says, "many promising technologies never even got a start, because the bar is set too high" on the need for durability.

For their analysis, the team looked at three different kinds of solar installations: a typical 6-kilowatt residential system, a 200-kilowatt commercial system, and a large 100-megawatt utility-scale system with solar tracking.

They used NREL benchmark parameters for U.S. solar systems and a variety of assumptions about future progress in solar technology development, financing, and the disposal of the initial panels after replacement, including recycling of the used modules.

The models were validated using four independent tools for calculating the levelized cost of electricity (LCOE), a standard metric for comparing the economic viability of different sources of electricity.

In all three installation types, they found, depending on the particulars of local conditions, replacement with new modules after 10 to 15 years could in many cases provide economic advantages while maintaining the many environmental and emissions-reduction benefits of solar power.

The basic requirement for cost-competitiveness is that any new solar technology that is to be installed in the U.S should start with a module efficiency of at least 20 percent, a cost of no more than 30 cents per watt, and a lifetime of at least 10 years, with the potential to improve on all three.

Jean points out that the solar technologies that are considered standard today, mostly silicon-based but also thin-film variants such as cadmium telluride, "were not very stable in the early years. The reason they last 25 to 30 years today is that they have been developed for many decades."

The new analysis may now open the door for some of the promising newer technologies to be deployed at sufficient scale to build up similar levels of experience and improvement over time and to make an impact on climate change earlier than they could without module replacement, he says.

"This could enable us to launch ideas that would have died on the vine" because of the perception that greater longevity was essential, Bulovi? says.


Related Links
Massachusetts Institute of Technology
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Speed bumps on German road to fight climate change
Berlin (AFP) Sept 19, 2019
Germany was an early pioneer in renewable energy and has massively boosted wind and solar power, so why is it bound to miss its self-imposed climate goals for next year? The "Energiewende", or clean energy transition, sometimes described as the biggest national project since reunification three decades ago, has hit a number of speed bumps. Problems have been linked to Germany's ongoing nuclear phase-out, its reliance on dirty coal, local opposition to new infrastructure, and the powerful, state- ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Plant research could benefit wastewater treatment, biofuels and antibiotics

Fe metabolic engineering method produces butanetriol sustainably from biomass

Rice reactor turns greenhouse gas into pure liquid fuel

Methane-producing microorganism makes a meal of iron

SOLAR DAILY
At NY Fashion Week, robotic dresses take on a life of their own

Russia terminates robot Fedor after space odyssey

'Sense of urgency', as top tech players seek AI ethical rules

Psychosensory electronic skin technology for future AI and humanoid development

SOLAR DAILY
Sparks fly as Germany's climate plan hits rural landscapes

Government vows action as German wind industry flags

Angry residents send German wind industry spinning

Colombia's biggest wind power portfolio purchased by AES Colombia

SOLAR DAILY
US fines Hyundai $47 mn over dirty diesel engines

Trump revokes California's authority to set auto emissions limits

Blame game as wheels come off India's auto sector

California vows to fight Trump administration's plan on emissions

SOLAR DAILY
First report of superconductivity in a nickel oxide material

Breakthrough enables storage and release of mechanical waves without energy loss

Coating developed by Stanford researchers brings lithium metal battery closer to reality

Physicists' study demonstrates silicon's energy-harvesting power

SOLAR DAILY
Russia to help Uganda develop nuclear energy

Japan's new environment minister wants to scrap nuclear power

Russia's world-first floating nuclear plant arrives in port

Four candidates running to lead UN nuclear watchdog

SOLAR DAILY
Vast Iraq power plant to be rebuilt; Plugs into Gulf power grid

Germany planning climate action worth over 100 bn euros

Italy's Enel to reduce C02 emissions 70% by 2030

Macro-energy systems and the science of the energy transition

SOLAR DAILY
Bolsonaro's scorched earth diplomacy could cost Brazil

Should the international community protect the Amazon?

Diversity breeds stability in forest ecosystems

Pope pleads with Madagascans to protect rainforest









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.