Solar Energy News  
SOLAR DAILY
Flipping a chemical switch helps perovskite solar cells beat the heat
by Staff Writers
Providence RI (SPX) Apr 28, 2016


Thin films of crystalline materials called perovskites provide a promising new way of making inexpensive and efficient solar cells. Now, an international team of researchers has shown a way of flipping a chemical switch that converts one type of perovskite into another -- a type that has better thermal stability and is a better light absorber. Image courtesy Padture Lab and Brown University.

Thin films of crystalline materials called perovskites provide a promising new way of making inexpensive and efficient solar cells. Now, an international team of researchers has shown a way of flipping a chemical switch that converts one type of perovskite into another - a type that has better thermal stability and is a better light absorber.

The study, by researchers from Brown University, the National Renewable Energy Laboratory (NREL) and the Chinese Academy of Sciences' Qingdao Institute of Bioenergy and Bioprocess Technology published in the Journal of the American Chemical Society, could be one more step toward bringing perovskite solar cells to the mass market.

"We've demonstrated a new procedure for making solar cells that can be more stable at moderate temperatures than the perovskite solar cells that most people are making currently," said Nitin Padture, professor in Brown's School of Engineering, director of Brown's Institute for Molecular and Nanoscale Innovation, and the senior co-author of the new paper. "The technique is simple and has the potential to be scaled up, which overcomes a real bottleneck in perovskite research at the moment."

Perovskites have emerged in recent years as a hot topic in the solar energy world. The efficiency with which they convert sunlight into electricity rivals that of traditional silicon solar cells, but perovskites are potentially much cheaper to produce. These new solar cells can also be made partially transparent for use in windows and skylights that can produce electricity, or to boost the efficiency of silicon solar cells by using the two in tandem.

Despite the promise, perovskite technology has several hurdles to clear - one of which deals with thermal stability. Most of the perovskite solar cells produced today are made with of a type of perovskite called methylammonium lead triiodide (MAPbI3). The problem is that MAPbI3 tends to degrade at moderate temperatures.

"Solar cells need to operate at temperatures up to 85 degrees Celsius," said Yuanyuan Zhou, a graduate student at Brown who led the new research. "MAPbI3 degrades quite easily at those temperatures."

That's not ideal for solar panels that must last for many years. As a result, there's a growing interest in solar cells that use a type of perovskite called formamidinium lead triiodide (FAPbI3) instead. Research suggests that solar cells based on FAPbI3 can be more efficient and more thermally stable than MAPbI3. However, thin films of FAPbI3 perovskites are harder to make than MAPbI3 even at laboratory scale, Padture says, let alone making them large enough for commercial applications.

Part of the problem is that formamidinium has a different molecular shape than methylammonium. So as FAPbI3 crystals grow, they often lose the perovskite structure that is critical to absorbing light efficiently.

This latest research shows a simple way around that problem. The team started by making high-quality MAPbI3 thin films using techniques they had developed previously. They then exposed those MAPbI3 thin films to formamidine gas at 150 degrees Celsius. The material instantly converted from MAPbI3 to FAPbI3 while preserving the all-important microstructure and morphology of the original thin film.

"It's like flipping a switch," Padture said. "The gas pulls out the methylammonium from the crystal structure and stuffs in the formamidinium, and it does so without changing the morphology. We're taking advantage of a lot of experience in making excellent quality MAPbI3 thin films and simply converting them to FAPbI3 thin films while maintaining that excellent quality."

This latest research builds on the work this international team of researchers has been doing over the past year using gas-based techniques to make perovskites. The gas-based methods have the potential of improving the quality of the solar cells when scaled up to commercial proportions. The ability to switch from MAPbI3 to FAPbI3 marks another potentially useful step toward commercialization, the researchers say.

"The simplicity and the potential scalability of this method was inspired by our previous work on gas-based processing of MAPbI3 thin films, and now we can make high-efficiency FAPbI3-based perovskite solar cells that can be thermally more stable," Zhou said. "That's important for bringing perovskite solar cells to the market."

Laboratory scale perovskite solar cells made using this new method showed efficiency of around 18 percent - not far off the 20 to 25 percent achieved by silicon solar cells.

"We plan to continue to work with the method in order to further improve the efficiency of the cells," said Kai Zhu, senior scientist at NREL and co-author of the new paper. "But this initial work demonstrates a promising new fabrication route."

Research paper: Other authors on the paper were Mengjin Yang from NREL and Shuping Pang from CAS Qingdao Institute of Bioenergy and Bioprocess Technology. The work was supported by the National Science Foundation (DMR-1305913, OIA-1538893) and the Department of Energy (DE-FOA-0000990).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Brown University
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SOLAR DAILY
Construction is bustling at Florida's first 'sustainable town'
Punta Gorda, United States (AFP) April 27, 2016
With deep pockets and an environmentalist's zeal, retired American football player Syd Kitson dreamed up a plan to build the United States' first solar-powered town on a vast swath of rural land in southwest Florida. Now, nearly a decade after he first purchased the 91,000 acres (37,000 hectares) known as Babcock Ranch, construction is bustling at what developers say will be the nation's fir ... read more


SOLAR DAILY
Making biodiesel with used cooking oil and a microwave

Major advance in synthetic biochemistry holds promise for biofuels

Recyclable, sugar-derived foam as renewable alternative to polyurethanes

Enzyme leads scientists further down path to pumping oil from plants

SOLAR DAILY
Algorithm for robot teams handles moving obstacles

Robots could get 'touchy' with self-powered smart skin

University of Sussex research brings 'smart hands' closer to reality

Autonomous vehicles face test limits tto prove safety

SOLAR DAILY
El Hierro, the Spanish island vying for 100% clean energy

USGS finds cranes isolated from wind farms

Iowa puts faith in wind energy

Maryland praised for renewable energy efforts

SOLAR DAILY
Lithium War Heats Up After Epic Launch Of Tesla Model 3

Chinese-made, US-bound: automakers eye exports

Technology drive sees 'connected car' link-ups in China

'Pioneer' commuters go electric in polluted Mexico City

SOLAR DAILY
Unexpected discovery leads to a better battery

A new way to get electricity from magnetism

Creation of Jupiter interior, a step towards room temp superconductivity

Detection of atomic scale structure of Cooper-pairs in a high-TC superconductor

SOLAR DAILY
Toshiba takes $2.3 bln hit from Westinghouse write-down

German power giants to pay into public fund to finance nuclear phase-out

BWXT tapped for nuclear reactor components, fuel

Advances in extracting uranium from seawater announced in special issue

SOLAR DAILY
Global leaders agree to set price on carbon pollution

German power supplier RWE warns of 'horror scenario' for sector

Economic development does mean a greater carbon footprint

Study shows best way to reduce energy consumption

SOLAR DAILY
Which trees face death in drought

Researchers look at how best to conserve forest giants

Clear-cutting destabilizes carbon in forest soils, Dartmouth study finds

Senegal environment ministry delegation arrested by Gambia









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.