Glass microparticles enhance solar cells efficiency by Staff Writers Saint Petersburg, Russia (SPX) Nov 21, 2017
Scientists from ITMO University suggested a new solar cell coating that combines features of an electrode and those of a light-trapping structure. The coating enabled researchers to cut down on reflected light and avoid solar cell overheating, thus increasing its overall efficiency by 20%. Moreover, the suggested method may be attractive for industrial applications due to its relatively low cost and simplicity. An entire range of materials can be used today for solar cell production. Solar cells based on amorphous silicon, for instance, are basically thin transparent films that may be applied to any surface including a window pane. When it comes to manufacturing solar cells, it is crucial to find ways to diminish light reflection from cells and avoid transparent electrode overheating, which prevents solar cells from working properly. Another key issue is to optimize the thickness of an active layer so that each photon reaching the solar cell is turned into electricity. Now scientists from ITMO University devised a novel way to address these issues by putting inside the top electrode silica particles, later transferred into drop-like shape. The resulting structure functioned as an electrode as well as a light-trapping coat focusing the light on the solar cell. "To create such structures on the surface of a solar cell we use the method of atomic layer deposition of aluminia zinc oxide. We literally build these electrodes atom by atom," explains Mikhail Omelyanovich, lead author of the paper. "As a result, overall solar cell efficiency is improved by 20%. What is more, such an electrode can be used for thin solar cells composed of any material beyond amorphous silicon." It took the team several years to develop an affordable solar cell manufacturing method that would appeal to the industry. "Three years ago we tried to cover cell surface with microspheres. Despite improving light absorption significantly, they had a major drawback in high reflectance rate. "We considered removing the upper part of microspheres, so as to make something similar to a lens that would focus the light on the solar cell. However, while working over practical realization of this idea we found much better structure. On the whole, the final solution exceeded our expectations based on theoretical calculations," says Mikhail. According to the authors, the manufacturing of solar cells with such surface coatings does not require complex technology and the process may be easily adapted for mass production. The research was published in Optics Letters.
Research Report: "Wide-angle light-trapping electrode for photovoltaic cells"
Fukuoka, Japan (SPX) Nov 21, 2017 Hydrogen gas is a promising "green" fuel. The lightest chemical element, hydrogen is an efficient energy store and could potentially replace gasoline in vehicles. However, the element does not exist in large amounts in nature, and must be produced artificially. Hydrogen can be produced by splitting water (H2O) into hydrogen (H2) and oxygen (O2). There are many ways to do this, but among th ... read more Related Links ITMO University All About Solar Energy at SolarDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |