Guanidinium stabilizes perovskite solar cells at 19 percent efficiency by Staff Writers Lausanne, Switzerland (SPX) Dec 12, 2017
With the power-conversion efficiency of silicon solar cells plateauing around 25%, perovskites are now ideally placed to become the market's next generation of photovoltaics. In particular, organic-inorganic lead halide perovskites offer manufacturing versatility that can potentially translate into much higher efficiency: studies have already shown photovoltaic performances above 20% across different solar cell architectures built with simple and low-cost processes. The main challenge for the perovskite field is not so much efficiency but stability. Unlike silicon cells, perovskites are soft crystalline materials and prone to problems due to decomposition over time. In a commercial context, this puts perovskites on a higher price tag than conventional silicon cells. There have therefore been many efforts in synthesizing perovskite materials that can maintain high efficiency over time. This is done by introducing different cations (positively charged ions) into the crystal structure of the perovskite. Although success has been reported by mixing inorganic cations like cesium or rubidium into the perovskite composition, these solutions tend to be difficult and expensive to implement. Meanwhile, no organic - and easier to synthesize - cations that can improve both efficiency and stability have been found so far. Now, the lab of Mohammad Khaja Nazeeruddin at EPFL Valais Wallis, with colleagues at the University of Cordoba, has discovered that they can improve perovskite stability by introducing the large organic cation guanidinium (CH6N3+) into methylammonium lead iodide perovskites, which are among the most promising alternatives in the group today. The scientists show that the guanidinium cation inserts into the crystal structure of the perovskite and enhances the material's overall thermal and environmental stability, overcoming what is known in the field as the "Goldschmidt tolerance factor limit." This is an indicator of the stability of a perovskite crystal, which describes how compatible a particular ion is to it. An ideal Goldschmidt tolerance factor should be below or equal to 1; guanidinium's is just 1.03. The study found that the addition of guanidinium significantly improved the material stability of the perovskite while delivering an average power conversion efficiency over 19% (19.2 +/- 0.4%) and stabilizing this performance for 1000 hours under continuous light illumination, which is a standard laboratory test for measuring the efficiency of photovoltaic materials. The scientists estimate that this corresponds to 1333 days (or 3.7 years) of real-world usage - this is based on standard criteria used in the field. Professor Nazeeruddin explains: "Taking a standard acceleration factor of 2 for each ten degrees increase in temperature, an acceleration factor of 8 is estimated for 55 C as opposed to 25 C degrees. Hence the 1000 hours at 55C equivalent would be 8000 hours. Our cells were subjected at 60C, therefore the numbers could be even higher. Assuming the equivalent of 6 hours full sunlight/day, or 250Wm-2 average irradiance (equivalent to North Africa) the total number of days are 1333, equals to 44.4 months and 3.7 years stability. However, for the standard solar cell accreditation a series of stress tests including temperature cycling and damp heat are also required." "This is a fundamental step within the perovskite field," says Nazeeruddin. "It offers a new paradigm in perovskite design as further explorations beyond the tolerance factor limit could prevail for cationic blends while preserving a 3D structure with improved stability through increased number of H-bonds within the inorganic framework - a problem that we are now close to solving."
Potsdam, Germany (SPX) Dec 11, 2017 Different low carbon technologies from wind or solar energy to fossil carbon capture and sequestration (CCS) differ greatly when it comes to indirect greenhouse gas emissions in their life cycle. This is the result of a comprehensive new study conducted by an international team of scientists that is now published in the journal Nature Energy. Unlike what some ... read more Related Links Ecole Polytechnique Federale de Lausanne All About Solar Energy at SolarDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |