Solar Energy News  
SOLAR DAILY
High performance nitride semiconductor for environmentally friendly photovoltaics
by Staff Writers
Tokyo, Japan (SPX) Jul 06, 2018

(a) This is a copper and Copper Nitride. (b) Theoretical Calculation for P-type and N-type Copper Nitride. (c) Direct Observation of Fluorine Position in Fluorine-doped Copper Nitride. (a) An image of thin film copper plates before and after reacting with ammonia and oxygen. Copper metal has been transformed to copper nitride. (b) Copper insertion for an n-type semiconductor and fluorine insertion for a p-type semiconductor. (c) Nitrogen plotted in red, fluorine in green, and copper in blue. Fluorine is located at the open space of the crystal as predicted by the theoretical calculation.

A Tokyo Institute of Technology research team has shown copper nitride acts as an n-type semiconductor, with p-type conduction provided by fluorine doping, utilizing a unique nitriding technique applicable for mass production and a computational search for appropriate doping elements, as well as atomically resolved microscopy and electronic structure analysis using synchrotron radiation.

These n-type and p-type copper nitride semiconductors could potentially replace the conventional toxic or rare materials in photovoltaic cells.

Thin film photovoltaics have equivalent efficiency and can cut the cost of materials compared to market-dominating silicon solar panels. Utilizing the photovoltaic effect, thin layers of specific p-type and n-type materials are sandwiched together to produce electricity from sunlight.

The technology promises a brighter future for solar energy, allowing low-cost and scalable manufacturing routes compared to crystalline silicon technology, even though toxic and rare materials are used in commercialized thin film solar cells. A Tokyo Institute of Technology team has challenged to find a new candidate material for producing cleaner, cheaper thin film photovoltaics.

They have focused on a simple binary compound, copper nitride that is composed of environmentally friendly elements. However, growing a nitride crystal in a high quality form is challenging as history tells us to develop gallium nitride blue LEDs. Matsuzaki and his coworkers have overcome the difficulty by introducing a novel catalytic reaction route using ammonia and oxidant gas.

This compound, pictured through the photograph in figure (a), is an n-type conductor that has excess electrons. On the other hand, by inserting fluorine element in the open space of the crystal, they found this n-type compound transformed into p-type as predicted by theoretical calculations and directly proven by atomically resolved microscopy in figures (b) and (c), respectively.

All existing thin film photovoltaics require a p-type or n-type partner in their makeup of a sandwich structure, requiring huge efforts to find the best combination. P-type and n-type conduction in the same material developed by Matsuzaki and his coworkers are beneficial to design a highly efficient solar cell structure without such efforts.

This material is non-toxic, abundant, and therefore potentially cheap - ideal replacements for in use cadmium telluride and copper indium gallium diselenide thin film solar cells. With the development of these p-type and n-type semiconductors, in a scalable forming technique using simple safe and abundant elements, the positive qualities will further bring thin film technology into the light.

Research paper


Related Links
Tokyo Institute of Technology
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Material could help windows both power your home and control its temperature
Washington DC (SPX) Jul 12, 2018
Environmentally friendly building trends have boosted the popularity of window coatings that keep heating and cooling costs down by blocking out unneeded parts of sunlight. They have also inspired scientists and engineers to create thin, see-through solar cells to turn windows into miniature electricity generators. Researchers in China have gone a step further and combined these two functions into one window-compatible material that could double the energy efficiency of an average household. Their ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Carbon dioxide-to-methanol process improved by catalyst

New 'promiscuous' enzyme helps turn plant waste into sustainable products

Biorefineries will have only minimal effects on wood products and feedstocks markets

Biorenewable, biodegradable plastic alternative synthesized by CSU chemists

SOLAR DAILY
MIT's Cheetah 3 robot avoids obstacles without the help of vision

Illinois' crop-counting robot earns top recognition at leading robotics conference

Next-generation robotic cockroach can explore under water environments

Rough terrain? No problem for beaver-inspired autonomous robot

SOLAR DAILY
Clock starts for Germany's next wind farm

ENGIE: Wind energy footprint firmed up in Norway

Batteries make offshore wind energy debut

India embarks on offshore wind energy effort

SOLAR DAILY
Uber joins scooter wars with Lime investment

China's CATL to build first EU electric car battery plant in Germany

Departing Apple engineer stole autonomous car tech: FBI

China's Baidu rolls out self-driving buses

SOLAR DAILY
Self-heating, fast-charging battery makes electric vehicles climate-immune

Engineer creates new design for ultra-thin capacitive sensors

Buildings as power stations - data shows they work: They generate more energy than they consume

New experimental results from the largest and most sophisticated stellerator

SOLAR DAILY
USA: Framatome completes major refurbishment of 31 reactor coolant pump motors

EU court dismisses Austrian case against UK nuclear plant

UAE further delays launch of first nuclear reactor

French MPs warn of nuclear safety 'failings'

SOLAR DAILY
Equinor buys short-term electricity trader

China reviewing low-carbon efforts

Path to zero emissions starts out easy, but gets steep

Green electricity isn't enough to curb global warming

SOLAR DAILY
UN report urges nations to take better care of world's forests

World's poorest unfairly shoulder costs of tropical forest conservation

Lemur losses could threaten Madagascar's largest tree species

How mangroves help keep the planet cool









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.