Solar Energy News  
SOLAR DAILY
Impossible breakthrough method of creating solar material at NREL
by Staff Writers
Golden CO (SPX) Dec 19, 2019

Sample aluminum III-V solar cells, grown using HVPE, are shown as Alx(Ga1-x)0.5In0.5P thin films after removing the GaAs substrate bonded to a glass handle for transmission measurements. The difference in color is due to the difference in the composition of Al and Ga. Specifically, the yellow samples are AlInP (no Ga) and the orange samples are AlGaInP. Photo by Dennis Schroeder, NREL

Scientists at the National Renewable Energy Laboratory (NREL) achieved a technological breakthrough for solar cells previously thought impossible.

The scientists successfully integrated an aluminum source into their hydride vapor phase epitaxy (HVPE) reactor, then demonstrated the growth of the semiconductors aluminum indium phosphide (AlInP) and aluminum gallium indium phosphide (AlGaInP) for the first time by this technique.

"There's a decent body of literature that suggests that people would never be able to grow these compounds with hydride vapor phase epitaxy," said Kevin Schulte, a scientist in NREL's Materials Applications and Performance Center and lead author of a new paper highlighting the research. "That's one of the reasons a lot of the III-V industry has gone with metalorganic vapor phase epitaxy (MOVPE), which is the dominant III-V growth technique. This innovation changes things."

The article, "Growth of AlGaAs, AlInP, and AlGaInP by Hydride Vapor Phase Epitaxy," appears in the journal ACS Applied Energy Materials.

III-V solar cells - so named because of the position the materials fall on the periodic table - are commonly used in space applications. Notable for high efficiency, these types of cells are too expensive for terrestrial use, but researchers are developing techniques to reduce those costs.

One method pioneered at NREL relies on a new growth technique called dynamic hydride vapor phase epitaxy, or D-HVPE. Traditional HVPE, which for decades was considered the best technique for production of light-emitting diodes and photodetectors for the telecommunications industry, fell out of favor in the 1980s with the emergence of MOVPE. Both processes involve depositing chemical vapors onto a substrate, but the advantage belonged to MOVPE because of its ability to form abrupt heterointerfaces between two different semiconductor materials, a place where HVPE traditionally struggled.

That's changed with the advent of D-HVPE.

Sample III-V solar cells grown using HVPE Sample aluminum III-V solar cells, grown using HVPE, are shown as Alx(Ga1-x)0.5In0.5P thin films after removing the GaAs substrate bonded to a glass handle for transmission measurements. The difference in color is due to the difference in the composition of Al and Ga. Specifically, the yellow samples are AlInP (no Ga) and the orange samples are AlGaInP. Photo by Dennis Schroeder, NREL

The earlier version of HVPE used a single chamber where one chemical was deposited on a substrate, which was then removed. The growth chemistry was then swapped for another, and the substrate returned to the chamber for the next chemical application. D-HVPE relies on a multi-chamber reactor. The substrate moves back and forth between chambers, greatly reducing the time to make a solar cell. A single-junction solar cell that takes an hour or two to make using MOVPE can potentially be produced in under a minute by D-HVPE. Despite these advances, MOVPE still held another advantage: the ability to deposit wide band gap aluminum-containing materials that enable the highest solar cell efficiencies. HVPE has long struggled with the growth of these materials due to difficulties with the chemical nature of the usual aluminum-containing precursor, aluminum monochloride.

The researchers always planned on introducing aluminum into D-HVPE, but first focused their efforts on validating the growth technique.

"We've tried to move the technology forward in steps instead of trying to do it all at once," Schulte said. "We validated that we can grow high-quality materials. We validated that we can grow more complex devices. The next step now for the technology to move forward is aluminum."

Schulte's co-authors from NREL are Wondwosen Metaferia, John Simon, David Guiling, and Aaron J. Ptak. They also include three scientists from a North Carolina company, Kyma Technologies. The company developed a method to produce a unique aluminum-containing molecule, which could then be flowed into the D-HVPE chamber.

The scientists used an aluminum trichloride generator, which was heated to 400 degrees Celsius to generate an aluminum trichloride from solid aluminum and hydrogen chloride gas. Aluminum trichloride is much more stable in the HVPE reactor environment than the monochloride form. The other components - gallium chloride and indium chloride - were vaporized at 800 degrees Celsius. The three elements were combined and deposited on a substrate at 650 degrees Celsius.

Using D-HVPE, NREL scientists previously were able to make solar cells from gallium arsenide (GaAs) and gallium indium phosphide (GaInP). In these cells, the GaInP is used as the "window layer," which passivates the front surface and permits sunlight to reach the GaAs absorber layer below where the photons are converted to electricity. This layer must be as transparent as possible, but GaInP is not as transparent as the aluminum indium phosphide (AlInP) used in MOVPE-grown solar cells. The current world efficiency record for MOVPE-grown GaAs solar cells that incorporate AlInP window layers is 29.1%. With only GaInP, the maximum efficiency for HVPE-grown solar cells is estimated to be only 27%.

Now that aluminum has been added to the mix of D-HVPE, the scientists said they should be able to reach parity with solar cells made via MOVPE.

"The HVPE process is a cheaper process," said Ptak, a senior scientist in NREL's National Center for Photovoltaics. "Now we've shown a pathway to the same efficiency that's the same as the other guys, but with a cheaper technique. Before, we were somewhat less efficient but cheaper. Now there's the possibility of being exactly as efficient and cheaper."


Related Links
National Renewable Energy Laboratory
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
A flaky option boosts organic solar cells
Thuwal, Saudi Arabia (SPX) Dec 19, 2019
An inexpensive material, made from tungsten disulfide flakes just a few atoms thick, has helped to improve the performance of organic solar cells1. The discovery by KAUST researchers could be an important step toward bringing these photovoltaic cells into wider use for generating clean electricity. Most solar cells use silicon to absorb light and convert its energy into electricity. But carbon-based semiconductor molecules, used in organic photovoltaics (OPVs), offer some distinct advantages over ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
NREL, Co-Optima research yields potential bioblendstock for diesel fuel

Saudis resist 'throwaway' culture of food waste

Indonesia hits European Union with WTO lawsuit over palm oil

Put a brake on bioenergy by 2050 to avoid negative climate impacts

SOLAR DAILY
Researchers call for harnessing, regulation of AI

Self-driving microrobots

CIMON-2 is on its way to the ISS

Helping machines perceive some laws of physics

SOLAR DAILY
Supporting structures of wind turbines contribute to wind farm blockage effect

Saving bats from wind turbine death

DTEK reaches 1 GW of renewable energy generation capacity in Ukraine

Global winds reverse decades of slowing and pick up speed

SOLAR DAILY
London street bans petrol, diesel cars

Lofty promises for autonomous cars unfulfilled

Ferrari plans electric car debut only 'after 2025'

Volkswagen strikes settlement with Canada over 'dieselgate'

SOLAR DAILY
Detours may make batteries better

NYSERDA announces battery storage project for town of Ulster, replacing previously planned fossil fuel plant

First Long Duration, Liquid Air Energy Storage System in the United States

BMW strikes five-year lithium deal for electric car batteries

SOLAR DAILY
Uranium chemistry and geological disposal of radioactive waste

Green-finance deal survives EU split on nuclear

Russian nuclear-powered giant icebreaker completes test run

Framatome signs a cooperation agreement with Japan on the development of fast neutron reactors

SOLAR DAILY
Eastern EU states opposed to 2050 zero-emissions goal

Brazil's Bolsonaro dismisses COP25 'game'

Maritime sector floats fuel levy to help cut carbon

Net zero: climate-saving target or delay tactic?

SOLAR DAILY
Estimates of ecosystem carbon mitigation improved towards the goal of the Paris agreement

Deforestation in Brazil's Amazon up by more than double: data

Healthy mangroves can protect against climate change

Beleaguered DR Congo rainforest attacked on all sides









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.