Subscribe free to our newsletters via your
. Solar Energy News .




SOLAR DAILY
Made from solar concentrate
by Staff Writers
Berkeley CA (SPX) Sep 03, 2015


Bathing the Earth with enough energy in one hour to meet human needs for an entire year, the sun represents the ultimate source of clean, green sustainable energy.

By combining designer quantum dot light-emitters with spectrally matched photonic mirrors, a team of scientists with the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of Illinois created solar cells that collect blue photons at 30 times the concentration of conventional solar cells, the highest luminescent concentration factor ever recorded. This breakthrough paves the way for the future development of low-cost solar cells that efficiently utilize the high-energy part of the solar spectrum.

"We've achieved a luminescent concentration ratio greater than 30 with an optical efficiency of 82-percent for blue photons," says Berkeley Lab director Paul Alivisatos, who is also the Samsung Distinguished Professor of Nanoscience and Nanotechnology at the University of California Berkeley, and director of the Kavli Energy Nanoscience Institute (ENSI), was the co-leader of this research. "To the best of our knowledge, this is the highest luminescent concentration factor in literature to date."

Alivisatos and Ralph Nuzzo of the University of Illinois are the the corresponding authors of a paper in ACS Photonics describing this research entitled "Quantum Dot Luminescent Concentrator Cavity Exhibiting 30-fold Concentration." Noah Bronstein, a member of Alivisatos's research group, is one of three lead authors along with Yuan Yao and Lu Xu. Other co-authors are Erin O'Brien, Alexander Powers and Vivian Ferry.

The solar energy industry in the United States is soaring with the number of photovoltaic installations having grown from generating 1.2 gigawatts of electricity in 2008 to generating 20-plus gigawatts today, according to the U.S. Department of Energy (DOE). Still, nearly 70-percent of the electricity generated in this country continues to come from fossil fuels. Low-cost alternatives to today's photovoltaic solar panels are needed for the immense advantages of solar power to be fully realized. One promising alternative has been luminescent solar concentrators (LSCs).

Unlike conventional solar cells that directly absorb sunlight and convert it into electricity, an LSC absorbs the light on a plate embedded with highly efficient light-emitters called "lumophores" that then re-emit the absorbed light at longer wavelengths, a process known as the Stokes shift. This re-emitted light is directed to a micro-solar cell for conversion to electricity. Because the plate is much larger than the micro-solar cell, the solar energy hitting the cell is highly concentrated.

With a sufficient concentration factor, only small amounts of expensive IIIV photovoltaic materials are needed to collect light from an inexpensive luminescent waveguide. However, the concentration factor and collection efficiency of the molecular dyes that up until now have been used as lumophores are limited by parasitic losses, including non-unity quantum yields of the lumophores, imperfect light trapping within the waveguide, and reabsorption and scattering of propagating photons.

"We replaced the molecular dyes in previous LSC systems with core/shell nanoparticles composed of cadmium selenide (CdSe) cores and cadmium sulfide (CdS) shells that increase the Stokes shift while reducing photon re-absorption," says Bronstein.

"The CdSe/CdS nanoparticles enabled us to decouple absorption from emission energy and volume, which in turn allowed us to balance absorption and scattering to obtain the optimum nanoparticle," he says. "Our use of photonic mirrors that are carefully matched to the narrow bandwidth of our quantum dot lumophores allowed us to achieve waveguide efficiency exceeding the limit imposed by total internal reflection."

In their ACS Photonics paper, the collaborators express confidence that future LSC devices will achieve even higher concentration ratios through improvements to the luminescence quantum yield, waveguide geometry, and photonic mirror design.

The success of this CdSe/CdS nanoparticle-based LSC system led to a partnership between Berkeley Lab, the University of Illinois, Caltech and the National Renewable Energy Lab (NREL) on a new solar concentrator project.

At the recent Clean Energy Summit held in Las Vegas, President Obama and Energy Secretary Ernest Moniz announced this partnership will receive a $3 million grant for the development of a micro-optical tandem LCS under MOSAIC, the newest program from DOE's ARPA-E. MOSAIC stands for Micro-scale Optimized Solar-cell Arrays with Integrated Concentration.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Lawrence Berkeley National Laboratory
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR DAILY
Solar Frontier's CIS Modules Selected For 26 MW Project In North Carolina
Tokyo (SPX) Sep 02, 2015
Solar Frontier, the world's largest CIS solar energy solutions provider, announced that it will supply its advanced solar module technology, CIS, for a 26 MW project located near Raleigh, North Carolina, U.S.A. Solar Frontier signed the module supply agreement with a California-based solar equipment supplier and initiated the first of a series of shipments in late August. The project will ... read more


SOLAR DAILY
Potential of disk-shaped small structures, coccoliths

Water heals a bioplastic

Waste coffee used as fuel storage

Methanotrophs: Could bacteria help protect our environment?

SOLAR DAILY
Australian scientists sending robot after destructive starfish

A house that runs itself? Samsung believes it's about time

Navy gives continued development approval for EOD robot

Biophysicists take small step in quest for 'robot scientist'

SOLAR DAILY
As wind-turbine farms expand, research shows they lose efficiency

Researchers find way for eagles and wind turbines to coexist

North Dakota plans more wind power capacity

European Funding brings ZephIR 300 wind lidar to Malta

SOLAR DAILY
New York cabs get smart in battle with Uber

Toyota getting in gear with smart cars

Uber raises $1.2 bn for Chinese branch: source

Self-driving golf carts

SOLAR DAILY
Corvus Energy powers the world's first electric commercial fishing vessel

New technique lowers cost of energy-efficient embedded computer systems

Australia's coal city backs green future

Hybrid glasses could revolutionize gas storage

SOLAR DAILY
Russia Mulls Participation in Armenian NPP New Power Unit Construction

EDF delays launch of EPR nuclear reactor

US Energy Department Improves Equipment for Workers at Nuclear Waste Site

French Nuclear Nightmare Sends Shockwaves Through Europe

SOLAR DAILY
How to curb emissions? Put a price on carbon

Hong Kong's Li overhauls business by merging utilities firms

Pakistan power sector target of ADB funding

Basic energy rights for low-income populations proposed in Environmental Justice journal

SOLAR DAILY
Russia Home to Largest Number of Trees Globally

Rate of global forest loss halved: UN report

Native tribe fights to save Boreal forest in Quebec

Columbia engineers develop new approach to modeling Amazon seasonal cycles




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.