Mixed-cation perovskite solar cells in space by Staff Writers Beijing, China (SPX) Mar 13, 2019
With the continuous improvement of efficiency and stability, perovskite solar cells are gradually approaching practical applications. PSCs may show the special application in space where oxygen and moisture (two major stressors for the stability) barely exist. Publishing in Sci. China-Phys. Mech. Astron., a group of researchers at Peking University in China, led by Dr. Rui Zhu and Prof. Qihuang Gong in collaboration with Prof. Guoning Xu from Academy of Opto-Electronics, CAS, and Prof. Wei Huang from Northwestern Polytechnical University, have reported the stability study of PSCs in near space. The metal halide perovskite materials demonstrate outstanding performance in photovoltaics because of their excellent optoelectronic properties. PSCs exhibiting outstanding efficiency, high power-per-weight, and excellent radiation resistance are considered to be promising for developing the new-generation energy technology for space application. However, the extreme space environment would impose a considerable challenge to the stability of devices, while the application of PSCs in space has rarely been researched. Researchers demonstrated the attempt for the stability study of large-area perovskite solar cells (active area of 1.00 cm2) in near space. The devices were fixed on the high-altitude balloon rising from ground to near space at an altitude of 35 km in Inner Mongolian Area, China. The near space atmosphere at 35 km contains trace amount of both moisture and ozone, resulting in AM0 solar spectrum with the light intensity of 136.7 mW/cm2. This atmosphere also contains several high-energy particles and radiation (such as neutrons, electrons, and gamma rays), originating from the galactic cosmic rays and solar flares. The devices were fabricated as TiO2 mesoporous structure based on two commonly reported mixed-cation perovskites, FA0.9Cs0.1PbI3, and FA0.81MA0.10Cs0.04PbI2.55Br0.40. Moreover, different kinds of perovskite photoactive absorbers with and without UV filter were investigated. As a result, the device based on FA0.81MA0.10Cs0.04PbI2.55Br0.40 retained 95.19% of its initial power conversion efficiency during the test under AM0 illumination. Researchers anticipate that this study will play very crucial roles in the future stability research of perovskite solar cells. This work also opens the route for perovskite solar cells in future space application. Dr. Rui Zhu and his colleagues are continuing to push the practical application of perovskite solar cells in space.
Light from an exotic crystal semiconductor could lead to better solar cells New Brunswick NJ (SPX) Mar 08, 2019 Scientists have found a new way to control light emitted by exotic crystal semiconductors, which could lead to more efficient solar cells and other advances in electronics, according to a Rutgers-led study in the journal Materials Today. Their discovery involves crystals called hybrid perovskites, which consist of interlocking organic and inorganic materials, and they have shown great promise for use in solar cells. The finding could also lead to novel electronic displays, sensors and other device ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |