Tax credit extensions impact renewable energy deployments by Staff Writers Golden CO (SPX) Mar 08, 2016
A critical milestone has been reached in cadmium telluride (CdTe) solar cell technology, helping pave the way for solar energy to directly compete with electricity generated by conventional energy sources. Scientists at the Energy Department's National Renewable Energy Laboratory (NREL) collaborated with researchers at Washington State University and the University of Tennessee to improve the maximum voltage available from a CdTe solar cell, which is a key factor in improving solar cell efficiency. The research appears in the Nature Energy journal article, "CdTe solar cells with open-circuit voltage breaking the 1 V barrier," authored by James Burst, Joel Duenow, David Albin, Eric Colegrove, Matthew Reese, Jeffery Aguiar, Chun-Sheng Jiang, Maulik Patel, Mowafak Al-Jassim, Darius Kuciauskas, Santosh Swain, Tursunjun Ablekim, Kelvin Lynn, and Wyatt Metzger. Silicon solar cells currently represent 90% of the solar cell market, but it will be difficult to significantly reduce their manufacturing costs. CdTe solar cells offer a low-cost alternative. These cells also have the lowest carbon footprint and adapt better than silicon in real-world conditions including hot, humid weather and low light. However, CdTe solar cells have not been as efficient as multicrystalline silicon solar cells until recently. One key area where CdTe has underperformed is in the maximum voltage available from the solar cell, a measure called open-circuit voltage. The quality of CdTe materials has prevented industry, universities, and national laboratories for the past 60 years from obtaining open-circuit voltage exceeding 900 millivolts on billions of solar cells; the vast majority have been limited to 750 to 850 millivolts. The research team improved cell voltage by shifting away from a standard processing step using cadmium chloride. Instead, they placed a small number of phosphorus atoms on tellurium lattice sites and then carefully formed ideal interfaces between materials with different atomic spacing to complete the solar cell. This approach improved the CdTe conductivity and carrier lifetime each by orders of magnitude, thereby enabling the fabrication of CdTe solar cells with an open-circuit voltage breaking the 1-volt barrier for the first time. The innovation establishes new research paths for solar cells to become more efficient and provide electricity at lower cost.
Related Links National Renewable Energy Laboratory All About Solar Energy at SolarDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |