NREL investigates coatings needed for concentrating solar power by Staff Writers Golden CO (SPX) Sep 21, 2017
Next-generation concentrating solar power (CSP) plants require high-temperature fluids, like molten salts, in the range of 550-750 degrees Celsius to store heat and generate electricity. At those high temperatures, however, the molten salts eat away at common alloys used in the heat exchangers, piping, and storage vessels of CSP systems. New research at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is aimed at mitigating corrosion levels in CSP plants with nickel-based coatings. "We are very excited about the potential implications of this research to provide corrosion-resistant coatings for CSP applications that could improve the economic viability of these systems," said Johney Green, associate laboratory director for mechanical and thermal engineering sciences. CSP plants with low-cost thermal storage enable facilities to deliver electricity whenever it is needed, helping to support grid reliability. Molten salts are commonly used for both the heat-transfer fluid and thermal energy storage because they can withstand high temperatures and retain the collected solar heat for many hours. To commercially use molten salt mixtures containing sodium chloride, potassium chloride, and magnesium chloride, the corrosion rate in the storage tanks must be slow - less than 20 micrometers per year - so that a concentrating solar power plant can achieve a 30-year life. Bare stainless steel alloys tested in a molten chloride corroded as fast as 4,500 micrometers per year. The solution to the corrosion problem could lie in research conducted by NREL's Judith Gomez-Vidal and published in the Nature Materials Degradation journal article, "Corrosion Resistance of MCrAlX Coatings in a Molten Chloride for Thermal Storage in Concentrating Solar Power Applications." Gomez-Vidal applied different types of nickel-based coatings, which are commonly used for reducing oxidation and corrosion, to stainless steel. One such coating, with the chemical formula NiCoCrAlYTa, showed the best performance so far. It limited the corrosion rate to 190 micrometers per year - not yet at the goal but a large improvement compared to the uncoated steel by a 96% reduction in the corrosion rate. That particular coating was pre-oxidized over a 24-hour period, during which a uniform and dense layer of aluminum oxide was formed and served to further protect the stainless steel from corrosion. "The use of surface protection is very promising to mitigate corrosion in molten salts in particular to those surfaces exposed to chlorine-containing vapor," said Gomez-Vidal, who holds a Ph.D. in metallurgical and materials engineering. "However, the rates of corrosion are still considerably high for CSP. This effort highlights the relevance of testing materials durability in solar power applications. More R and D is needed to achieve the target corrosion level needed, which could include the synergy of combining surface protection with chemical control of the molten salt and the surrounding atmosphere." Additional tests will require evaluation of the coatings under thermal cycling and the introduction of oxygen-containing atmospheres to increase the oxidation potential of the systems. The addition of oxygen ensures the formation of protective scales that could reform in the presence of oxygen if cracks appear during operation. Gomez-Vidal has recently published other work in which such aluminum oxide layers were able to grow and remained adhered to the surface in the presence of air during thermal cycling of samples.
(UPI) Sep 19, 2017 In an announcement ahead of the French president's speech before the U.N. General Assembly, Total said it took a greater stake in a renewable power company. The French supermajor said Tuesday it made a $284.7 million investment to take an indirect 23 percent stake in renewable power company EREN RE. Total said could eventually take the company over completely within the next five years. ... read more Related Links National Renewable Energy Laboratory All About Solar Energy at SolarDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |