New approach improving stability and optical properties of perovskite films by Staff Writers Hong Kong (SPX) Feb 14, 2019
Metal halide perovskites are regarded as next generation materials for light emitting devices (LEDs). A recent joint-research co-led by the scientist from City University of Hong Kong (CityU) has developed a new and efficient fabrication approach to produce all-inorganic perovskite films with better optical properties and stability, enabling the development of high colour-purity and low-cost perovskite LEDs with a high operational lifetime. Perovskite LEDs (PeLEDs) are an emerging light-emitting technology with advantages of low manufacturing cost, high light quality and energy efficiency. Metal halide (meaning compounds of metals with chlorine, bromine or iodine) perovskites have recently attracted a lot of attention as promising materials for solution-processed LEDs, owing to their excellent optical properties, such as saturated emission colors and easy color tunability. In particular, perovskites based on inorganic cesium cations, namely CsPbX3 (where X can be chlorine, bromine and iodine), exhibit better thermal and chemical stability compared to the organic-inorganic 'hybrid' metal halide perovskites, and may thus provide the base for high-performance LEDs with reasonable operational stability. But the previous inorganic PeLEDs exhibited relatively poor electro-luminescence performance due to their large perovskite grain sizes. Now a team of researchers at CityU and at Shanghai University in mainland China has developed an efficient fabrication approach to make smooth inorganic perovskite films with substantially enhanced performance and stability. Their findings appear in the latest issue (2019, 10, 665) of the scientific journal Nature Communications, titled "Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices ". The team has found that using cesium trifluoroacetate (TFA) as the cesium source in the one-step solution coating, instead of the commonly used cesium bromide (CsBr), enables fast crystallization of small-grained CsPbBr3 perovskite crystals, forming the smooth and pinhole-free perovskite films. This is because the interaction of TFA- anions with Pb2+ cations in the CsPbX3 precursor solution greatly improves the crystallization rate of perovskite films and suppresses surface defects. As a result, the team has managed to make efficient and stable green PeLEDs based on these films, with a maximum current efficient of 32.0 cd A-1 corresponding to an external quantum efficiency of 10.5% - a level generally considered as satisfactory in existing PeLEDs. More importantly, the all-inorganic perovskite LEDs based on these films demonstrated a record operational lifetime. They have a half-lifetime of over 250 hours at an initial luminance of 100 cd m-2, which is a 17 times improvement in operational lifetime compared with CsBr-derived PeLED. "Our study suggests that the high color-purity and low-cost all-inorganic lead halide perovskite films can be developed into highly efficient and stable LEDs via a simple optimization of the grain boundaries," says Andrey Rogach, Chair Professor of Photonics Materials at CityU, who is one of the correspondence authors of the paper. "I foresee significant application potential of such films, as they are easy to fabricate and can be easily deposited by printing to realise various optoelectronic devices," he adds. Another correspondence author of the paper is Professor Yang Xuyong from Shanghai University. The first authors are Wang Haoran at Shanghai University and Zhang Xiaoyu, a former visiting research student at CityU, now working as a postdoc at Jilin University.
Moving artificial leaves out of the lab and into the air Chicago IL (SPX) Feb 13, 2019 Artificial leaves mimic photosynthesis - the process whereby plants use water and carbon dioxide from the air to produce carbohydrates using energy from the sun. But even state-of-the-art artificial leaves, which hold promise in reducing carbon dioxide from the atmosphere, only work in the laboratory because they use pure, pressurized carbon dioxide from tanks. But now, researchers from the University of Illinois at Chicago have proposed a design solution that could bring artificial leaves out of ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |