Subscribe free to our newsletters via your
. Solar Energy News .




SOLAR DAILY
On the Road to Artificial Photosynthesis
by Staff Writers
Berkeley CA (SPX) Sep 30, 2014


This TEM shows gold-copper bimetallic nanoparticles used as catalysts for the reduction of carbon dioxide, a key reaction for artificial photosynthesis.

The excessive atmospheric carbon dioxide that is driving global climate change could be harnessed into a renewable energy technology that would be a win for both the environment and the economy. That is the lure of artificial photosynthesis in which the electrochemical reduction of carbon dioxide is used to produce clean, green and sustainable fuels.

However, finding a catalyst for reducing carbon dioxide that is highly selective and efficient has proven to be a huge scientific challenge.

Meeting this challenge in the future should be easier thanks to new research results from Berkeley Lab. Peidong Yang, a chemist with Berkeley Lab's Materials Sciences Division, led a study in which bimetallic nanoparticles of gold and copper were used as the catalyst for the carbon dioxide reduction. The results experimentally revealed for the first time the critical influence of the electronic and geometric effects in the reduction reaction.

"Acting synergistically, the electronic and geometric effects dictate the binding strength for reaction intermediates and consequently the catalytic selectivity and efficiency in the electrochemical reduction of carbon dioxide," Yang says.

"In the future, the design of carbon dioxide reduction catalysts with good activity and selectivity will require the careful balancing of these two effects as revealed in our study." Yang, who also holds appointments with the University of California (UC) Berkeley and the Kavli Energy NanoSciences Institute at Berkeley, is a leading authority on nanoparticle phenomena. His most recent research has focused on nanocatalysts fashioned from metal alloys rather than a single metal such as gold, tin or copper.

"By alloying, we believe we can tune the binding strength of intermediates on a catalyst surface to enhance the reaction kinetics for the carbon dioxide reduction," he says.

"Nanoparticles provide an ideal platform for studying this effect because, through appropriate synthetic processes, we can access a wide range of compositions, sizes and shapes, allowing for a deeper understanding of catalyst performance through precise control of active sites."

In addition, Yang says, nanoparticle as catalysts have high surface-to-volume and surface-to-mass ratios that are advantageous for achieving high catalytic activity. For this new study, uniform gold-copper bimetallic nanoparticles with different compositions were assembled into ordered monolayers then observed during carbon dioxide reduction.

"The ordered monolayers served as a well-defined platform that enabled us to better understand their fundamental catalytic activity in carbon dioxide reduction," Yang says.

"Based on our observations, the activity of the gold-copper bimetallic nanoparticles can be explained in terms of the electronic effect, in which the binding of intermediates can be tuned using different surface compositions, and the geometric effect, in which the local atomic arrangement at the active site allows the catalyst to deviate from the scaling relation."

The effects Yang and his colleagues observed for gold-copper bimetallic nanoparticles should hold true for other carbon dioxide reduction catalysts as well.

"We expect the effects we observed to be universal for a wide range of catalysts, as evidenced in other areas of catalysis such as the hydrogen evolution and oxygen reduction reactions," says Dohyung Kim, a member of Yang's research group and a collaborator in this study. "The factors we have identified are based on the solid concept of electrocatalysis."

Knowing the influence of the electronic and geometric effects makes it possible to deduce how intermediate products in the reduction of carbon dioxide, such as carboxylic acid and carbon monoxide, will interact with the surface of a newly proposed catalyst and thereby provide the means for predicting the catalyst's performance.

Coupled with the exceptional structuring of active catalytic sites made possible by the use of nanoparticles, the path is paved, Yang and his colleagues believe, for unprecedented improvements in electrochemical carbon dioxide reduction. "My group is now using the insights gained from this study in the design of next generation carbon dioxide reduction catalysts," Yang says.

.


Related Links
Berkeley Lab
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR DAILY
Large-scale solar chiefs hit Canberra to defend Renewable Energy Target
Canberra, Australia (SPX) Sep 29, 2014
Heads of companies behind Australia's major large-scale solar projects are today taking their fight to save the Renewable Energy Target (RET) all the way to Canberra. Business leaders from solar companies including First Solar, Fotowatio Renewable Ventures (FRV) and SunPower are heading to the nation's capital to meet with key ministers and parliamentarians. "We'll be telling them th ... read more


SOLAR DAILY
Bioenergy: Australia's forgotten renewable energy source (so far)

Maverick Synfuels Introduces Maverick Oasis

Plant variants point the way to improved biofuel production

Search for better biofuels microbes leads to the human gut

SOLAR DAILY
Taste-testing robots in Thailand to ensure local restaurants are doing country proud

Underwater robot for port security

System designed to improve hand function lost to nerve damage

Blackout? Robots to the Rescue

SOLAR DAILY
Scottish renewable energy output up 30 percent from 2013

UAE's Masdar joins mega wind project off Britain

RWE Innogy gets new British wind energy running

Moventas to service two turbines in Eesti Energia's Aulepa wind park

SOLAR DAILY
EU warns Germany as car coolant row heats up

Reducing traffic congestion with wireless system

California Issues Permits for 29 Self-Driving Cars

GM expects record 2014 sales in China: executive

SOLAR DAILY
Smart, eco-friendly new battery to solve problems

New Technology May Lead to Prolonged Power in Mobile Devices

How things coil

Blue LED breakthrough for efficient electronics

SOLAR DAILY
Fukushima operator, Sellafield to compare nuclear notes

India turns to nuclear as energy crisis deepens

Los Alamos researchers uncover new properties in nanocomposite oxide ceramics for reactor fuel, fast-ion conductors

AREVA wins additional contract from the US DoE for the development of Enhanced Accident Tolerant Fuel

SOLAR DAILY
Paraffins to cut energy consumption in homes

South Australia to reap benefits from higher Renewable Energy Target

Renewables critical to achieving Energy Green Paper goals

Smart meters could cause conflict for housemates

SOLAR DAILY
Philippines 'breaks world tree-planting record'

Water research tackles growing grassland threat: trees

Major palm oil companies to halt deforestation

Smithsonian Scientists Discover Tropical Tree Microbiome in Panama




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.