Solar Energy News  
SOLAR DAILY
Perovskite solar cells go single crystal
by Staff Writers
Beijing, China (SPX) Aug 29, 2017


Single crystalline CH3NH3PbI3 self-grown on FTO/TiO2 substrate. (a) Schematic self-growth via temperature gradient and capillary effect; (b) cross-sectional SEM image of CH3NH3PbI3 on FTO/TiO2; (c) high resolution TEM image of single crystalline CH3NH3PbI3.

Photovoltaic conversion is regarded as the ultimate solution to the mankind's ever growing demand for energy, yet the traditional silicon-based solar cells are expensive to produce, and the production itself involves intensive energy consumption. The emerging hybrid organic-inorganic solar cells based on perovskite CH3NH3PbI3, on the other hand, are not only inexpensive to process but also flexible, and thus are widely pursued as one of the most promising next generation photovoltaic conversion technologies.

Since its first report in 2009, the photovoltaic conversion efficiency of perovskite solar cells has increased spectacularly from 3.81% to 22.1% in just 7 years, and such unprecedented rise has fueled worldwide pursuit for its efficiency record.

Nevertheless, in the last two years, the pace in perovskite solar cell efficiency increase has slowed down considerably despite that it is still far away from the projected theoretical limit of 31%. Therefore, researchers are exploring new strategies to further enhance the perovskite solar cell performance.

The current perovskite solar cells are based on polycrystalline CH3NH3PbI3 films, and thus inevitably have many defects in grains and grain boundaries that affect the device performance. Efforts have been made to produce bulk CH3NH3PbI3 crystals that exhibit exceptional photovoltaic properties such as long diffusion length and lifetime of photo-generated charge carriers, though the integration of bulk crystal into perovskite solar cell device architecture proves rather challenging.

Now a team of Chinese and US scientists from Shenzhen Institute of Technology, Shijiazhuang Tiedao University, Peking University, Argonne National Laboratory, Institute of Metal Research, and University of Washington, led by Profs. Jiangyu Li and Jinjin Zhao, has successfully grown single crystalline film of CH3NH3PbI3 directly on electron-collecting FTO/TiO2 substrate, as shown in Fig. 1.

They took advantage of temperature gradient and capillary effect during the growth process, enabling them to produce high quality single crystalline film tightly integrated on FTO/TiO2. This proves critical, as FTO/TiO2 is the most widely used electron-collecting substrate for perovskite solar cells, making the subsequent device fabrication straightforward.

Indeed, the single crystalline CH3NH3PbI3 film shows excellent photovoltaic properties. Measured directly on FTO glass substrate with poor electron extraction, the time-resolved photoluminescence shows much longer carrier lifetime in single crystalline CH3NH3PbI3 film compared to polycrystalline one, as seen in Fig. 2(a).

When a TiO2 electron collecting layer is added on top of FTO glass, then the charge carrier lifetime drops substantially, thanks to the efficient electron extraction at the TiO2/perovskite interface. As a result, the device exhibits photovoltaic conversion efficiency of 8.78%, the highest reported to date for a single crystalline perovskite solar cells.

The team pointed out that the system has much room for further improvement, and with continuous optimization of materials and devices, they believe that the single crystalline perovskite solar cells will rival their polycrystalline counterparts in the foreseeable future.

Jinjin Zhao, Guoli Kong, Shulin Chen, Qian Li Boyuan Huang, Zhenghao Liu, Xingyuan San, Yujia Wang, Chen Wang, Yunce Zhen, Haidan Wen, Peng Gao, Jiangyu Li. Single crystalline CH3NH3PbI3 self-grown on FTO/TiO2 substrate for high efficiency perovskite solar cells. Science Bulletin, 2017.

SOLAR DAILY
How 139 countries could be powered by 100 percent wind, water, and solar energy by 2050
Washington DC (SPX) Aug 28, 2017
The latest roadmap to a 100% renewable energy future from Stanford's Mark Z. Jacobson and 26 colleagues is the most specific global vision yet, outlining infrastructure changes that 139 countries can make to be entirely powered by wind, water, and sunlight by 2050 after electrification of all energy sectors. Such a transition could mean less worldwide energy consumption due to the efficien ... read more

Related Links
Science China Press
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Researchers identify cheaper, greener biofuels processing catalyst

Technique could aid mass production of biodegradable plastic

How a bacterium can live on methanol

Cyborg bacteria outperform plants when turning sunlight into useful compounds

SOLAR DAILY
New robot rolls with the rules of pedestrian conduct

Illinois researchers develop origami-inspired robot

Smart computers

Designing custom robots in a matter of minutes

SOLAR DAILY
Saudi Arabia shortlists 25 bidders for major wind plant

First foundations set for Baltic Sea wind farm

Wind energy blows up storm of controversy in Mexico

U.S. extends wind energy taproots into Zambia

SOLAR DAILY
Nanoparticles pollution rises 30 percent when flex-fuel cars switch from bio to fossil

New emissions test necessary for new vehicles in the EU

New liquid-metal membrane technology may help make hydrogen fuel cell vehicles viable

Uber to resume Philippine service 'soon' after fine

SOLAR DAILY
Silicon solves problems for next-generation battery technology

Recipe for safer batteries - Just add diamonds

Physicists find strange state of matter in superconducting crystal

No batteries required: Energy-harvesting yarns generate electricity

SOLAR DAILY
Kazakhstan inaugurates IAEA-backed nuclear fuel bank

2018 start for Russia-backed nuclear plant work:

Fukushima operator faces $5 bn US suit over 2011 disaster

UAE nuclear programme edges toward 2018 launch

SOLAR DAILY
ADB: New finance model needed for low-carbon shift in Asia

China merges energy giants into global leader

Power demand to peak in Europe summers, not winters: study

India must rethink infrastructure needs for 100 new 'smart' cities to be sustainable

SOLAR DAILY
Brazil's opening of Amazon to mining sets off alarm

Annual value of trees estimated at 500 million dollars per megacity

Bangladesh police declare world-heritage forest "pirate free"

How orange peels revived a Costa Rican forest









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.