Photosynthesis seen in a new light by rapid X-ray pulses by Staff Writers Tempe AZ (SPX) Nov 11, 2019
The ability to transform sunlight into energy is one of Nature's more remarkable feats. Scientists understand the basic process of photosynthesis, but many crucial details remain elusive, occurring at dimensions and fleeting time scales long deemed too minuscule to probe. Now, that is changing. In a new study, led by Petra Fromme and Nadia Zatsepin at the Biodesign Center for Applied Structural Discovery, the School of Molecular Sciences and the Department of Physics at ASU, researchers investigated the structure of Photosystem I (PSI) with ultrashort X-ray pulses at the European X-ray Free Electron Laser (EuXFEL), located in Hamburg, Germany. PSI is a large biomolecular system that acts as a large solar energy converter transforming solar energy into chemical energy. Photosynthesis provides energy for all complex life on Earth and supplies the oxygen we breathe. Advances in unraveling the secrets of photosynthesis promise to improve agriculture and aid in the development of next-generation solar energy storage systems that combine the efficiency of Nature with the stability of human engineered systems. "This work is so important, as it shows the first proof of concept of megahertz serial crystallography with one of the largest and most complex membrane proteins in photosynthesis: Photosystem I" says Fromme. "The work paves the way towards time-resolved studies at the EuXFEL to determine molecular movies of the light-driven path of the electrons in photosynthesis or visualize how cancer drugs attack malfunctioning proteins." The EuXFEL, which recently began operation, is the first to employ a superconducting linear accelerator that yields exciting new capabilities including very fast megahertz repetition rates of its X-ray pulses - over 9000 times faster than any other XFEL - with pulses separated by less than 1 millionth of a second. With these incredibly brief bursts of X-ray light, researchers will be able to much more quickly record molecular movies of fundamental biological processes and will likely impact diverse fields including medicine and pharmacology, chemistry, physics, materials science, energy research, environmental studies, electronics, nanotechnology, and photonics. Petra Fromme and Nadia Zatsepin are co-corresponding authors of the paper, published in the current issue of the journal Nature Communications.
Strength in numbers "This is a significant milestone in the development of serial femtosecond crystallography, building on the well-coordinated effort of a large, cross-disciplinary, international team and years of developments in disparate fields" emphasizes Zatsepin, former Research Assistant Professor in the ASU Department of Physics and Biodesign CASD, and now Senior Research Fellow at La Trobe University in Australia. Christopher Gisriel, the paper's co-first author, worked on the project while a Postdoctoral Researcher in the Fromme laboratory and is excited about the project. "Fast data collection in serial femtosecond crystallography experiments makes this revolutionary technique more accessible to those interested in the structure-function relationship for enzymes. This is exemplified by our new publication in Nature Communications showing that even the most difficult and complex protein structures can be solved by serial femtosecond crystallography while collecting data at megahertz repetition rate." "It is very exciting to see the hard work from the many folks that drove this project to materialize," says Jesse Coe, co-first author who graduated last year with a Ph.D. in Biochemistry from ASU. "This is a huge step in the right direction toward better understanding Nature's process of electron transfer that has been refined over billions of years. "
Extreme science In serial femtosecond crystallography, a jet of protein crystals is injected into the path of the pulsed XFEL beam at room temperature, yielding structural information in the form of diffraction patterns. From these patterns, scientists can determine atomic scale images of proteins in close-to-native conditions, paving the way toward accurate molecular movies of molecules at work. X-rays damage biomolecules, a problem that has plagued structure determination efforts for decades, requiring the biomolecules to be frozen to limit the damage. But the X-ray bursts produced by an XFEL are so short - lasting mere femtoseconds - that X-ray scattering from a molecule can be recorded before destruction takes place, akin to using a fast camera shutter. As a point of reference a femtosecond is a millionth of a billionth of a second, the same ratio as a second is to 32 million years. Due to the sophistication, size and cost of XFEL facilities, only five are currently available for such experiments worldwide - a severe bottleneck for researchers since each XFEL can typically only host one experiment at a time. Most XFELs generate X-ray pulses between 30 and 120 times per second and it can take several hours to days to collect the data required to determine a single structure, let alone a series of frames in a molecular movie. The EuXFEL is the first to employ a superconducting linear accelerator in its design, enabling the fastest succession of X-ray pulses of any XFEL, which can significantly reduce the time it takes to determine each structure or frame of the movie.
High risk, high reward The team developed new methods that allowed PSI, which is large complex consisting of 36 proteins and 381 cofactors, that include the 288 chlorophylls (the green pigments that absorb the light) and has over 150,000 atoms and is over 20 times larger than previous proteins studied at the EuXFEL, to have its structure determined at room temperature to a remarkable 2.9 angstrom resolution - a significant milestone. Billions of microcrystals of the PSI membrane protein, derived from cyanobacteria, had to be grown for the new study. Rapid crystal growth from nanocrystal seeds was required to guarantee the essential uniformity of crystal size and shape. PSI is a membrane protein, which is a class of proteins of high importance that have been notoriously tricky to characterize. Their elaborate structures are embedded in the cell membrane's lipid bilayer. Typically, they must be carefully isolated in fully active form from their native environment and transformed into a crystalline state, where the molecules pack into crystals but maintain all their native function. In the case of PSI, this is achieved by extracting it with very mild detergents that replace the membrane and surround the protein like a pool inner tube, which mimics the native membrane environment and keeps PSI fully functional once it's packed within the crystals. So when researchers shine light on the green pigments (chlorophylls) that catch the light by the antenna system of PSI, the energy is used it to shoot an electron across the membrane. To keep PSI fully functional, the crystals are only weakly packed containing 78% water, which makes them soft like a piece of butter in the sun and makes it difficult handling these fragile crystals . "To isolate, characterize and crystallize one gram of PSI, or one billion billion PSI molecules, for the experiments in their fully active form was a huge effort of the students and researchers in my team" says Fromme." In the future, with even higher repetition rates and novel sample delivery systems the sample consumption will be dramatically reduced." The recording and analysis of the diffraction data was another challenge. A unique X-ray detector was developed by the EuXFEL and DESY to handle the demands of structural biology studies at the EuXFEL: the adaptive-gain integrating pixel detector, or AGIPD. Each of AGIPD's 1 million pixels are less than a hundredth of an inch across and contain 352 analog memory cells, which enable the AGIPD to collect data at megahertz rates over a large dynamic range. However, to collect accurate crystallographic data from microcrystals of large membrane proteins required a compromise between spatial resolution and sampling of the data. "Pushing for higher resolution data collection with the current detector size could preclude useful processing of the crystallographic data because the diffraction spots are insufficiently resolved by the X-ray detector pixels" warns Zatsepin, "yet in terms of data rates and dynamic range, what the AGIPD is capable of is incredible." The novel data reduction and crystallographic analysis software designed specifically to deal with the challenges unique to the massive datasets in XFEL crystallography, whose development was led by collaborators at CFEL, DESY, and ASU, have come a long way since the first high-resolution XFEL experiment in 2011. "Our software and DESY's high-performance computing capabilities are really being put to the test with the unprecedented data volumes generated at the EuXFEL. It is always exciting to push the limits of state-of-the-art technology," adds Zatsepin.
Membrane proteins: floppy, yet formidable Despite their enormous importance in biology, membrane protein structures make up less than 1% of all protein structures solved to date because they are notoriously tricky to isolate, characterize and crystallize. This is why major advances in crystallographic methods, such as the advent of membrane protein megahertz serial femtosecond crystallography, are undoubtedly going to have a significant impact on the scientific community.
It takes a village
Freedom Solar signs contract for major solar power installation at Lost Pines Toyota in Bastrop Austin TX (SPX) Nov 06, 2019 Austin-based Freedom Solar has announced it has signed a contract with Lost Pines Toyota in Bastrop for a major solar power installation that will make Lost Pines the first automotive dealership in Bastrop to go solar. "Lost Pines Toyota is already a leader in green initiatives, and with this installation, they will take a giant leap forward in terms of sustainability and cost savings," said Freedom Solar CEO Bret Biggart. "We are proud that they chose Freedom Solar for this important project." ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |