Physics model acts as an 'EKG' for solar panel health by Staff Writers West Lafayette IND (SPX) Sep 06, 2018
Companies and governments have regularly invested in solar farms and lost money when weather degradation unexpectedly cut panel lifetime short. As electricity generated from solar energy increasingly matches fossil fuels in price, companies are pressured to keep panels living past their warranty and stretch the billions of dollars paid up front for their construction. Diagnosing degraded solar panels sooner through a tool functioning like an electrocardiogram would contribute to lower electric bills on clean energy as well as cut manufacturing costs. "We need to look at the heartbeat of a solar farm to understand its diseases," said Xingshu Sun, a recent doctoral graduate of Purdue University's School of Electrical and Computer Engineering. A solar farm's "heartbeat" is data on how well it generates electricity. Purdue researchers created an algorithm using the physics of panel degradation that can analyze solar farm data from anywhere, essentially as a portable EKG for solar farms. The algorithm is in an experimental stage, but already downloadable for other researchers to use through a National Science Foundation-funded platform called Digital Environment for Enabling Data-driven Science (DEEDS) here. "It's the difference between daily life and the doctor's office. Previously, facilities were just checking a solar farm's heartbeat in a controlled environment, like with an EKG in a hospital lab," said Muhammad Ashraful Alam, Purdue's Jai N. Gupta Professor of Electrical and Computer Engineering. "But a solar farm itself is always generating new field data for us to collect and analyze, so we need to bring the EKG to the field. This information-driven approach is transformative, because the approach would allow continuous monitoring and decision making. Ours is a first step in that direction." Real-time diagnostics would ultimately inform better panel designs - the cost-saving "treatment" that could prolong lifespan and continue to cut electrical bills. "If you look at solar modules on the market, their designs hardly differ no matter where they are in the world, just like how iPhones sold in the U.S. and China are almost identical," Sun said. "But solar modules should be designed differently, since they degrade differently in different environments." Degradation in humid environments, for example, comes in the form of corrosion, but high altitudes with no humidity cause degradation through the increased concentration of UV light. Like with human diseases, symptoms of corrosion or sun-beaten silicon tend to not show up on a solar panel until many years after the degradation started. Without knowing when degradation is happening, companies tend to compensate for different weather conditions by under- or over-designing solar panels, driving up manufacturing costs. Purdue researchers used public solar panel data provided by the National Renewable Energy Laboratory to pull together parameters of how well the panels are generating electricity, such as resistance and voltage. When fed into the algorithm, a curve generates to show the power output of a solar cell. Published findings appear in the journal Progress in Photovoltaics. The next step is improving the algorithm over time. Alam's lab has been collaborating with other Purdue research teams to develop DEEDS into a platform for preserving and sharing data, computational tools and scientific workflows from solar panel facilities as well as from a range of sources for other fields, including chemistry, nutrition science and environmental science. In the long term, the researchers hope the algorithm could show how much energy a solar farm produces in 30 years by looking at the relationship between weather forecast data and projection of electric circuit parameters. Integrating the algorithm with other physics-based models could eventually predict the lifetime of a solar farm.
Research Report: Real-time monitoring and diagnosis of photovoltaic system degradation only using maximum power point - the Suns-Vmp method
Boron nitride separation process could facilitate higher efficiency solar cells Atlanta GA (SPX) Aug 31, 2018 A team of semiconductor researchers based in France has used a boron nitride separation layer to grow indium gallium nitride (InGaN) solar cells that were then lifted off their original sapphire substrate and placed onto a glass substrate. By combining the InGaN cells with photovoltaic (PV) cells made from materials such as silicon or gallium arsenide, the new lift-off technique could facilitate fabrication of higher efficiency hybrid PV devices able to capture a broader spectrum of light. Such hy ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |