Potassium gives perovskite-based solar cells an efficiency boost by Staff Writers Cambridge UK (SPX) Mar 26, 2018
A simple potassium solution could boost the efficiency of next-generation solar cells, by enabling them to convert more sunlight into electricity. An international team of researchers led by the University of Cambridge found that the addition of potassium iodide 'healed' the defects and immobilised ion movement, which to date have limited the efficiency of cheap perovskite solar cells. These next-generation solar cells could be used as an efficiency-boosting layer on top of existing silicon-based solar cells, or be made into stand-alone solar cells or coloured LEDs. The results are reported in the journal Nature. The solar cells in the study are based on metal halide perovskites - a promising group of ionic semiconductor materials that in just a few short years of development now rival commercial thin film photovoltaic technologies in terms of their efficiency in converting sunlight into electricity. Perovskites are cheap and easy to produce at low temperatures, which makes them attractive for next-generation solar cells and lighting. Despite the potential of perovskites, some limitations have hampered their efficiency and consistency. Tiny defects in the crystalline structure of perovskites, called traps, can cause electrons to get 'stuck' before their energy can be harnessed. The easier that electrons can move around in a solar cell material, the more efficient that material will be at converting photons, particles of light, into electricity. Another issue is that ions can move around in the solar cell when illuminated, which can cause a change in the bandgap - the colour of light the material absorbs. "So far, we haven't been able to make these materials stable with the bandgap we need, so we've been trying to immobilise the ion movement by tweaking the chemical composition of the perovskite layers," said Dr Sam Stranks from Cambridge's Cavendish Laboratory, who led the research. "This would enable perovskites to be used as versatile solar cells or as coloured LEDs, which are essentially solar cells run in reverse." In the study, the researchers altered the chemical composition of the perovskite layers by adding potassium iodide to perovskite inks, which then self-assemble into thin films. The technique is compatible with roll-to-roll processes, which means it is scalable and inexpensive. The potassium iodide formed a 'decorative' layer on top of the perovskite which had the effect of 'healing' the traps so that the electrons could move more freely, as well as immobilising the ion movement, which makes the material more stable at the desired bandgap. The researchers demonstrated promising performance with the perovskite bandgaps ideal for layering on top of a silicon solar cell or with another perovskite layer - so-called tandem solar cells. Silicon tandem solar cells are the most likely first widespread application of perovskites. By adding a perovskite layer, light can be more efficiently harvested from a wider range of the solar spectrum. "Potassium stabilises the perovskite bandgaps we want for tandem solar cells and makes them more luminescent, which means more efficient solar cells," said Stranks, whose research is funded by the European Union and the European Research Council's Horizon 2020 Programme. "It almost entirely manages the ions and defects in perovskites." "We've found that perovskites are very tolerant to additives - you can add new components and they'll perform better," said first author Mojtaba Abdi-Jalebi, a PhD candidate at the Cavendish Laboratory who is funded by Nava Technology Limited. "Unlike other photovoltaic technologies, we don't need to add an additional layer to improve performance, the additive is simply mixed in with the perovskite ink." The perovskite and potassium devices showed good stability in tests, and were 21.5% efficient at converting light into electricity, which is similar to the best perovskite-based solar cells and not far below the practical efficiency limit of silicon-based solar cells, which is (29%). Tandem cells made of two perovskite layers with ideal bandgaps have a theoretical efficiency limit of 45% and a practical limit of 35% - both of which are higher than the current practical efficiency limits for silicon. "You get more power for your money," said Stranks.
Fronius supplies inverters for solar project in Vietnam Wels, Austria (SPX) Mar 19, 2018 A regulated feed-in tariff for solar power has been in place in Vietnam since the end of 2017. For many private individuals and companies, this is an incentive to invest in renewable energies. As a specialist in solar technology, Fronius Solar Energy is supporting system operators in the country with high-quality, easy-to-install inverters and a unique service plan with local partners in the region. Fronius recently supplied inverters for a PV system in Ho-Chi-Minh City, which will generate up to ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |