Solar Energy News  
SOLAR DAILY
Printable solar cells just got a little closer
by Staff Writers
Toronto, Canada (SPX) Feb 17, 2017


The new perovskite solar cells have achieved an efficiency of 20.1 per cent and can be manufactured at low temperatures, which reduces the cost and expands the number of possible applications. Image courtesy Kevin Soobrian.

A U of T Engineering innovation could make printing solar cells as easy and inexpensive as printing a newspaper. Dr. Hairen Tan and his team have cleared a critical manufacturing hurdle in the development of a relatively new class of solar devices called perovskite solar cells. This alternative solar technology could lead to low-cost, printable solar panels capable of turning nearly any surface into a power generator.

"Economies of scale have greatly reduced the cost of silicon manufacturing," said Professor Ted Sargent, an expert in emerging solar technologies and the Canada Research Chair in Nanotechnology. "Perovskite solar cells can enable us to use techniques already established in the printing industry to produce solar cells at very low cost. Potentially, perovskites and silicon cells can be married to improve efficiency further, but only with advances in low-temperature processes."

Today, virtually all commercial solar cells are made from thin slices of crystalline silicon which must be processed to a very high purity. It's an energy-intensive process, requiring temperatures higher than 1,000 degrees Celsius and large amounts of hazardous solvents.

In contrast, perovskite solar cells depend on a layer of tiny crystals - each about 1,000 times smaller than the width of a human hair - made of low-cost, light-sensitive materials. Because the perovskite raw materials can be mixed into a liquid to form a kind of 'solar ink', they could be printed onto glass, plastic or other materials using a simple inkjet printing process.

But, until now, there's been a catch: in order to generate electricity, electrons excited by solar energy must be extracted from the crystals so they can flow through a circuit. That extraction happens in a special layer called the electron selective layer, or ESL. The difficulty of manufacturing a good ESL has been one of the key challenges holding back the development of perovskite solar cell devices.

"The most effective materials for making ESLs start as a powder and have to be baked at high temperatures, above 500 degrees Celsius," said Tan. "You can't put that on top of a sheet of flexible plastic or on a fully fabricated silicon cell - it will just melt."

Tan and his colleagues developed a new chemical reaction than enables them to grow an ESL made of nanoparticles in solution, directly on top of the electrode. While heat is still required, the process always stays below 150 degrees C, much lower than the melting point of many plastics.

The new nanoparticles are coated with a layer of chlorine atoms, which helps them bind to the perovskite layer on top - this strong binding allows for efficient extraction of electrons. In a paper recently published in Science, Tan and his colleagues report the efficiency of solar cells made using the new method at 20.1 per cent.

"This is the best ever reported for low-temperature processing techniques," said Tan. He adds that perovskite solar cells using the older, high-temperature method are only marginally better at 22.1 per cent, and even the best silicon solar cells can only reach 26.3 per cent.

Another advantage is stability. Many perovskite solar cells experience a severe drop in performance after only a few hours, but Tan's cells retained more than 90 per cent of their efficiency even after 500 hours of use. "I think our new technique paves the way toward solving this problem," said Tan, who undertook this work as part of a Rubicon Fellowship.

"The Toronto team's computational studies beautifully explain the role of the newly developed electron-selective layer. The work illustrates the rapidly-advancing contribution that computational materials science is making towards rational, next-generation energy devices," said Professor Alan Aspuru-Guzik, an expert on computational materials science in the Department of Chemistry and Chemical Biology at Harvard University, who was not involved in the work.

"To augment the best silicon solar cells, next-generation thin-film technologies need to be process-compatible with a finished cell. This entails modest processing temperatures such as those in the Toronto group's advance reported in Science," said Professor Luping Yu of the University of Chicago's Department of Chemistry. Yu is an expert on solution-processed solar cells and was not involved in the work.

Keeping cool during the manufacturing process opens up a world of possibilities for applications of perovskite solar cells, from smartphone covers that provide charging capabilities to solar-active tinted windows that offset building energy use. In the nearer term, Tan's technology could be used in tandem with conventional solar cells.

"With our low-temperature process, we could coat our perovskite cells directly on top of silicon without damaging the underlying material," said Tan. "If a hybrid perovskite-silicon cell can push the efficiency up to 30 per cent or higher, it makes solar power a much better economic proposition."

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Toronto Faculty of Applied Science and Engineering
All About Solar Energy at SolarDaily.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SOLAR DAILY
Accelerated chlorophyll reaction in microdroplets to reveal secret of photosynthesis
Seoul, South Korea (SPX) Feb 14, 2017
DGIST announced that the research team of the fellow Hong-Gil Nam and the research team of Professor Richard N. Zere of Stanford University have found in their joint research that chlorophyll demetallation is naturally accelerated a thousand times faster in microdroplets without any help of enzymes. Chlorophyll is a green pigment molecule found in photosynthetic organisms and plays a key r ... read more


SOLAR DAILY
Alberta backing bioenergy programs

A better way to farm algae

DuPont Industrial Biosciences to develop new high-efficiency biogas enzyme method

Cathay Pacific to cut emissions with switch to biofuel

SOLAR DAILY
Scientists invent new, faster gait for six-legged robots

Now you can 'build your own' bio-bot

How algorithms secretly run the world

Algorithms: the managers of our digital lives

SOLAR DAILY
US grid can handle more offshore wind power

Michigan meets renewable energy targets

British grid drawing power from new offshore wind farm

Prysmian UK to supply land cable connections for East Anglia ONE offshore wind farm

SOLAR DAILY
Roads are driving rapid evolutionary change in our environment

Four-stroke engine cycle produces hydrogen from methane and captures CO2

NTU Singapore invents ultrafast camera for self-driving vehicles and drones

Tesla takes on Gulf gas guzzlers

SOLAR DAILY
Stabilizing energy storage

Looking for the next leap in rechargeable batteries

Tiny nanoclusters could solve big problems for lithium-ion batteries

New hydronium-ion battery presents opportunity for more sustainable energy storage

SOLAR DAILY
System automatically detects cracks in nuclear power plants

China delays nuclear reactor start again

Slovenian nuclear plant restarts after shutdown

Russia's Rosatom Subsidiaries Produced 7,900 Tonnes of Uranium in 2016

SOLAR DAILY
New Zealand lauded for renewables, but challenges remain

EU parliament backs draft carbon trading reforms

Taiwan lantern makers go green for festival of lights

Republican ex-top diplomats propose a carbon tax

SOLAR DAILY
Laissez-faire is not good enough for reforestation

How much biomass grows in the savannah

Why nature restoration takes time

Wetlands play vital role in carbon storage, study finds









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.