Solar Energy News  
SOLAR DAILY
Quantum rebar: Quantum dots enhance stability of solar-harvesting perovskite crystals
by Staff Writers
Toronto, Canada (SPX) May 27, 2019

File image of perovskite based quantum dots.

University of Toronto Engineering researchers have combined two emerging technologies for next-generation solar power - and discovered that each one helps stabilize the other. The resulting hybrid material is a major step toward reducing the cost of solar power while multiplying the ways it can be used.

Today virtually all solar cells are made of high-purity silicon. It's a well-established technology, and in recent years the manufacturing cost has dropped significantly due to economies of scale. Nevertheless, silicon has an upper limit to its efficiency. A team led by Professor Ted Sargent is pursuing complementary materials that can enhance the solar-harvesting potential of silicon by absorbing wavelengths of light that silicon does not.

"Two of the technologies we pursue in our lab are perovskite crystals and quantum dots," says Sargent. "Both of these are amenable to solution processing. Imagine a 'solar ink' that could be printed onto flexible plastic to create low-cost, bendable solar cells. We can also combine them in front of, or behind, silicon solar cells to further enhance their efficiency."

One of the key challenges facing both perovskites and quantum dots is stability. At room temperature, some types of perovskites experience an adjustment in their 3D crystal structure that renders them transparent - they no longer fully absorb solar radiation.

For their part, quantum dots must be covered in a thin layer known as a passivation layer. This layer - only a single molecule thick - prevents the quantum dots from sticking to each other. But temperatures above 100 C can destroy the passivation layer, causing the quantum dots to aggregate or clump together, wrecking their ability to harvest light.

In a paper published in Nature, a team of researchers from Sargent's lab report a way to combine perovskites and quantum dots that stabilizes both.

"Before we did this, people usually tried to address the two challenges separately," says Mengxia Liu, the paper's lead author.

"Research has shown the successful growth of hybrid structures that incorporated both perovskites and quantum dots," says Liu, who is now a postdoctoral fellow at Cambridge University. "This inspired us to consider the possibility that the two materials could stabilize each other if they share the same crystal structure."

Liu and the team built two types of hybrid materials. One was primarily quantum dots with about 15% perovskites by volume, and is designed to turn light into electricity. The other was primarily perovskites with less than 15% quantum dots by volume, and is better suited to turning electricity into light, for example, as part of a light emitting diode (LED).

The team was able to show that the perovskite-rich material remained stable under ambient conditions (25 C and 30% humidity) for six months, about ten times longer than materials composed of the same perovskite alone. As for the quantum dot material, when heated to 100 C, the aggregation of the nanoparticles was five times lower than if they hadn't been stabilized with perovskites.

"It proved out our hypothesis remarkably well," says Liu. "It was an impressive outcome beyond our expectations."

The new paper provides proof-of-concept for the idea that these kinds of hybrid materials can enhance stability. In the future, Liu hopes that solar cell manufacturers will take her ideas and improve on them even further to create solution-processed solar cells that meet all the same criteria as traditional silicon.

"Industrial researchers could experiment by using different chemical elements to form the perovskites or quantum dots," says Liu. "What we have shown is that this is a promising strategy for improving stability in these kinds of structures."

"Perovskites have shown tremendous potential as solar materials; but fundamental solutions are needed to turn them into stable and robust materials that can meet the demanding requirements of the renewable energy sector." says Jeffrey C. Grossman, the Morton and Claire Goulder and Family Professor in Environmental Systems and a Professor in the Department of Materials Science and Engineering at the Massachusetts Institute of Technology, who was not involved in the study. "The Toronto study shows one exciting new avenue to advancing the understanding, and the achievement, of stable perovskite crystal phases."

Liu credits the discovery in part to the collaborative environment in the team, which included researchers from many disciplines, including chemistry, physics and her own field of materials science.

"Perovskite and quantum dots have distinct physical structures, and the similarities between these materials have been usually overlooked," she says. "This discovery shows what can happen when we combine ideas from different fields."


Related Links
University of Toronto Faculty of Applied Science and Engineering
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
DNV GL launches SolarFarmer PV plant modelling software to handle complex terrain
Hovik, Norway (SPX) May 15, 2019
DNV GL's SolarFarmer software for modelling, design and analysis of solar photovoltaic (PV) plants can accurately and efficiently handle the demands of layouts in increasingly complex terrain. As the demand for solar energy increases, solar plant design are becoming more challenging as the terrain becomes more complex. This will require PV plant design software that can perform more reliable modelling for accurate energy calculations. DNV GL's new SolarFarmer software, launched at InterSolar ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Where there's waste there's fertilizer

When biodegradable plastic isn't

Electrode's 'hot edges' convert CO2 gas into fuels and chemicals

The secrets of secretion: isolating eucalyptus genes for oils, biofuel

SOLAR DAILY
Dog-like robot made by students jumps, flips and trots

Spidey senses could help autonomous machines see better

Hyperdimensional computing theory could change the way AI works

With a hop, a skip and a jump, high-flying robot leaps through obstacles with ease

SOLAR DAILY
UK hits historic coal-free landmark

BayWa r.e. sells its first Australian wind farms to Epic Energy

The complicated future of offshore wind power in the US

SeaPlanner to support marine coordination for Taiwan's Formosa I Offshore Wind Farm

SOLAR DAILY
US Postal Service to launch test of self-driving trucks

Tata Motors profits fall 47% amid Jaguar Land Rover China slowdown

Flying cars mooted for Paris' public transport network

German startup to offer electric air taxis 'by 2025'

SOLAR DAILY
Self-repairing high-capacity long-life batteries

Washable, wearable battery-like devices could be woven directly into clothes

Researchers set new mark for highest-temperature superconductor

New surface treatment could improve refrigeration efficiency

SOLAR DAILY
Iran to increase uranium, heavy water production: official

Three Mile Island nuclear plant to close by September 30

Experimental device generates electricity from the coldness of the universe

Public dread of nuclear power limits its use

SOLAR DAILY
World nations failing the poorest on energy goals: study

'Step-change' in energy investment needed to meet climate goals: IEA

Czech power group CEZ ups profit, sales on higher output

Adding satnav to turn power grids into smart systems

SOLAR DAILY
Gabon leader sacks vice president, forestry minister

Amount of carbon stored in forests reduced as climate warms

Mapping microbial symbioses in forests

Top Gabon officials suspended in timber scandal









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.