Solar Energy News  
SOLAR DAILY
Renewables doesn't equal zero-carbon energy, and the difference is growing
by Staff Writers
Stanford CA (SPX) May 27, 2019

.

While 160 companies around the world have committed to use "100 percent renewable energy," that does not mean "100 percent carbon-free energy." The difference will grow as power grids become less reliant on fossil power, according to a new Stanford study published in Joule. Entities committed to fighting climate change can and should measure the environmental benefits of their renewable strategies accurately, the authors write.

Current methods of estimating greenhouse gas emissions use yearly averages, even though the carbon content of electricity on the grid can vary a lot over the course of a day in some locations. By 2025, the use of yearly averages in California could overstate the carbon reductions associated with solar power by more than 50 percent when compared to hourly averages, the paper shows.

One finding of this analysis is that wind power - not solar - needs to be the next wave of investments for California. Similar analyses could suggest different options like nuclear power, geothermal energy, and long-range transmission in other locations.

"To guarantee 100 percent emissions reductions from renewable energy, power consumption needs to be matched with renewable generation on an hourly basis," said Sally Benson, co-author of the paper and co-director of the Precourt Institute for Energy.

"Just purchasing more solar energy in a grid that already has lots of solar generation will not result in zero emissions," Benson, professor in the Energy Resources Engineering Department in the School of Earth, Energy and Environmental Sciences, also said.

Annual vs. hourly accounting
Corporations that claim to be 100 percent renewable do not actually cover all their power use with renewables, as some acknowledge. Instead, they purchase or generate enough renewable energy to match 100 percent or more of their electricity use over the course of the year. For energy purchases dominated by solar power, an entity generates far more electricity than it uses during the afternoon and sells the excess. Then at nighttime it purchases power from the grid, which is much more carbon-intensive if generated by burning of fossil fuels.

The use of annual averages of the carbon content of grid power is valid only when fluctuations in renewable generation are small, or when all excess renewables can be stored. Places like California, Hawaii and some European countries experience large fluctuations in carbon content due to existing renewables, and do not yet have enough storage capacity to capture all excess electricity. In California, intentional reductions in solar and wind production, or "curtailments," reached 3 percent of total generated energy in two months last year, the paper cites.

The difference in environmental benefit between wind and solar in today's accounting methods therefore doesn't account for the time of day when power is delivered. Instead, the difference between emissions reductions from wind and solar generation is only related to the difference in carbon footprint between the two technologies.

"Both the carbon footprint of a large consumer and the environmental value of renewable energy assets depend on the grid they interact with," said energy resources engineering PhD student Jacques de Chalendar, lead author of the study. "Using hourly data is the best way to measure the environmental benefit of renewables, and this will become increasingly true wherever renewable generation is growing."

Investing in non-solar renewables
The problem with investing in more solar panels in California is that the output often will not cause fossil fuel based generators to turn off, because they are already idle at the time of day the solar panels will produce power. In the paper's case study, which approximated a hypothetical 1 megawatt constant load in California, short-term annual and hourly carbon estimates did not show significant differences in 2018. But by 2025, the two methods of estimation varied widely.

Using annual accounting, a 100 percent solar strategy in 2025 would reduce carbon emissions by 119 percent of the hypothetical company's carbon footprint. Using hourly emissions, though, the number shrinks to 66 percent, according to the study. For a 100 percent wind power strategy, annual averages indicate 131 percent carbon reductions, which actually jumps to 135 percent using hourly data.

"In California, gas is often the marginal generation source and has a higher emissions rate than average grid power, which is why purchasing renewables can result in a net negative carbon footprint," said de Chalendar. "A consumer with a 100 percent renewable energy supply can actually reduce the carbon footprint of the grid in addition to their own carbon footprint."

Energy storage
Hourly carbon accounting methods could help large consumers increase their use of low-carbon power from the grid. With more accurate information, consumers can move flexible consumption to times of the day when grid power is cleanest. The data could also help consumers decide whether they should invest in large-scale energy storage projects as the most economical way to meet their carbon targets. This is because energy storage allows consumers to draw electricity from the grid during low-carbon periods and store it for later use.

Stanford University, for example, recently electrified its heating and cooling system and added thermal storage to cut emissions to a third of their 2014 peak levels. By using its energy storage to maximize purchases of electricity in the afternoon when solar power dominates the California grid, Stanford could reduce emissions from heating and cooling by an additional 40 percent, according to a study published earlier this month by the authors of this paper.

Location-specific analyses might suggest different types of low-carbon investments and strategies for other regions, the paper notes. In Great Britain, for example, grid carbon intensity is currently lower at night, meaning different types of renewable investments or consumption behaviors might be better. Alternatively, long-range transmission of electricity could also allow entities to transport low-carbon electricity elsewhere when there is an oversupply and receive low-carbon electricity when there is a minimal amount of renewable electricity generation.

"Transparent, precise and meaningful carbon accounting is necessary," Benson said. "And if it's done properly, we can make the right investments in renewable power and create a more sustainable grid."

+ All data and supplemental code used in their commentary are publicly available here.

Research paper


Related Links
Stanford University
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Quantum rebar: Quantum dots enhance stability of solar-harvesting perovskite crystals
Toronto, Canada (SPX) May 27, 2019
University of Toronto Engineering researchers have combined two emerging technologies for next-generation solar power - and discovered that each one helps stabilize the other. The resulting hybrid material is a major step toward reducing the cost of solar power while multiplying the ways it can be used. Today virtually all solar cells are made of high-purity silicon. It's a well-established technology, and in recent years the manufacturing cost has dropped significantly due to economies of scale. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Where there's waste there's fertilizer

When biodegradable plastic isn't

Electrode's 'hot edges' convert CO2 gas into fuels and chemicals

The secrets of secretion: isolating eucalyptus genes for oils, biofuel

SOLAR DAILY
With a hop, a skip and a jump, high-flying robot leaps through obstacles with ease

Dog-like robot made by students jumps, flips and trots

Here's Looking at You! Astrobee's First Robot Completes Initial Hardware Checks in Space

Robots suggest synchronized driverless cars may improve traffic flow

SOLAR DAILY
UK hits historic coal-free landmark

BayWa r.e. sells its first Australian wind farms to Epic Energy

The complicated future of offshore wind power in the US

SeaPlanner to support marine coordination for Taiwan's Formosa I Offshore Wind Farm

SOLAR DAILY
US Postal Service to launch test of self-driving trucks

Tata Motors profits fall 47% amid Jaguar Land Rover China slowdown

Flying cars mooted for Paris' public transport network

German startup to offer electric air taxis 'by 2025'

SOLAR DAILY
Researchers set new mark for highest-temperature superconductor

New surface treatment could improve refrigeration efficiency

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth

Aerojet Rocketdyne and ZAF Energy Team Up

SOLAR DAILY
Iran to increase uranium, heavy water production: official

Three Mile Island nuclear plant to close by September 30

Experimental device generates electricity from the coldness of the universe

Public dread of nuclear power limits its use

SOLAR DAILY
World nations failing the poorest on energy goals: study

'Step-change' in energy investment needed to meet climate goals: IEA

Czech power group CEZ ups profit, sales on higher output

Adding satnav to turn power grids into smart systems

SOLAR DAILY
Gabon leader sacks vice president, forestry minister

Amount of carbon stored in forests reduced as climate warms

Mapping microbial symbioses in forests

Top Gabon officials suspended in timber scandal









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.