Solar Energy News  
SOLAR DAILY
Researchers boost performance quality of perovskites
by Staff Writers
Seattle WA (SPX) Aug 02, 2018

file image only

Solar cells need to slim down. Solar cells are devices that absorb photons from sunlight and convert their energy to move electrons - enabling the production of clean energy and providing a dependable route to help combat climate change. But most solar cells used widely today are thick, fragile and stiff, which limits their application to flat surfaces and increases the cost to make the solar cell.

"Thin-film solar cells" could be 1/100th the thickness of a piece of paper and flexible enough to festoon surfaces ranging from an aerodynamically sleek car to clothing. To make thin-film solar cells, scientists are moving beyond the "classic" semiconductor compounds, such as gallium arsenide or silicon, and working instead with other light-harvesting compounds that have the potential to be cheaper and easier to mass produce. The compounds could be widely adopted if they could perform as well as today's technology.

In a paper published online this spring in the journal Nature Photonics, scientists at the University of Washington report that a prototype semiconductor thin-film has performed even better than today's best solar cell materials at emitting light.

"It may sound odd since solar cells absorb light and turn it into electricity, but the best solar cell materials are also great at emitting light," said co-author and UW chemical engineering professor Hugh Hillhouse, who is also a faculty member with both the UW's Clean Energy Institute and Molecular Engineering and Sciences Institute. "In fact, typically the more efficiently they emit light, the more voltage they generate."

The UW team achieved a record performance in this material, known as a lead-halide perovskite, by chemically treating it through a process known as "surface passivation," which treats imperfections and reduces the likelihood that the absorbed photons will end up wasted rather than converted to useful energy.

"One large problem with perovskite solar cells is that too much absorbed sunlight was ending up as wasted heat, not useful electricity," said co-author David Ginger, a UW professor of chemistry and chief scientist at the CEI. "We are hopeful that surface passivation strategies like this will help improve the performance and stability of perovskite solar cells."

Ginger's and Hillhouse's teams worked together to demonstrate that surface passivation of perovskites sharply boosted performance to levels that would make this material among the best for thin-film solar cells.

They experimented with a variety of chemicals for surface passivation before finding one, an organic compound known by its acronym TOPO, that boosted perovskite performance to levels approaching the best gallium arsenide semiconductors.

"Our team at the UW was one of the first to identify performance-limiting defects at the surfaces of perovskite materials, and now we are excited to have discovered an effective way to chemically engineer these surfaces with TOPO molecules," said co-lead author Dane deQuilettes, a postdoctoral researcher at the Massachusetts Institute of Technology who conducted this research as a UW chemistry doctoral student.

"At first, we were really surprised to find that the passivated materials seemed to be just as good as gallium arsenide, which holds the solar cell efficiency record. So to double-check our results, we devised a few different approaches to confirm the improvements in perovskite material quality."

DeQuilettes and co-lead author Ian Braly, who conducted this research as a doctoral student in chemical engineering, showed that TOPO-treating a perovskite semiconductor significantly impacted both its internal and external photoluminescence quantum efficiencies - metrics used to determine how good a semiconducting material is at utilizing an absorbed photon's energy rather than losing it as heat. TOPO-treating the perovskite increased the internal photoluminescence quantum efficiencies by tenfold - from 9.4 percent to nearly 92 percent.

"Our measurements observing the efficiency with which passivated hybrid perovskites absorb and emit light show that there are no inherent material flaws preventing further solar cell improvements," said Braly.

"Further, by fitting the emission spectra to a theoretical model, we showed that these materials could generate voltages 97 percent of the theoretical maximum, equal to the world record gallium arsenide solar cell and much higher than record silicon cells that only reach 84 percent."

These improvements in material quality are theoretically predicted to enable the light-to-electricity power conversion efficiency to reach 27.9 percent under regular sunlight levels, which would push the perovskite-based photovoltaic record past the best silicon devices.

The next step for perovskites, the researchers said, is to demonstrate a similar chemical passivation that is compatible with easily manufactured electrodes - as well as to experiment with other types of surface passivation.

"Perovskites have already demonstrated unprecedented success in photovoltaic devices, but there is so much room for further improvement," said deQuilettes. "Here we think we have provided a path forward for the community to better harness the sun's energy."

Research paper


Related Links
University of Washington
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
NRL increases UAV endurance with Solar Soaring technology
Washington DC (SPX) Jul 26, 2018
Researchers at the U.S. Naval Research Laboratory are developing technology for unmanned aerial vehicles that has given them the ability to fly for more than 12 hours by harvesting energy from the atmosphere and the sun. Solar-Soaring is a pair of endurance enhancer technologies. They aid the warfighter by enabling a UAV to fly longer without carrying extra weight in batteries. "One of the common complaints that we hear across industry and the warfighters is that they want aircraft to fly lo ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Team shatters theoretical limit on bio-hydrogen production

Hydrogen and plastic production offer new catalyst with a dual function

Feeding plants to this algae could fuel your car

Splitting water: Nanoscale imaging yields key insights

SOLAR DAILY
Cell-sized robots can sense their environment

If only AI had a brain

Army researchers teaching robots to be more reliable teammates for soldiers

Microbots capable of sensing environs could explore intestines, pipelines

SOLAR DAILY
Searching for wind for the future

Clock starts for Germany's next wind farm

ENGIE: Wind energy footprint firmed up in Norway

Batteries make offshore wind energy debut

SOLAR DAILY
Uber hits brakes on self-driving trucks

EU carmakers 'inflating' emissions to skew carbon targets

Uber resumes testing for autonomous cars in 'manual mode'

GM launches peer-to-peer car sharing service on rental platform

SOLAR DAILY
New class of materials could be used to make batteries that charge faster

Liquid microscopy technique reveals new problem with lithium-oxygen batteries

Gold nanoparticles to find applications in hydrogen economy

The relationship between charge density waves and superconductivity

SOLAR DAILY
Framatome becomes main distributor of Chesterton valve packing and seals for the nuclear energy industry

SUSI submarine robot enables successful visual Inspection at Asco Nuclear Power Plant

EDF sees new delay, cost overruns for nuclear reactor

First Ukraine nuclear reactor loaded 'solely' with non-Russian fuel

SOLAR DAILY
Germany thwarts China by taking stake in 50Hertz power firm

Global quadrupling of cooling appliances to 14 billion by 2050

Equinor buys short-term electricity trader

China reviewing low-carbon efforts

SOLAR DAILY
Tropical forests may soon hinder, not help, climate change effort

Fires spark biodiversity criticism of Sweden's forest industry

Behold the Amazonian eco-warrior drag queen

Tropical forests could soon accelerate, not slow, global warming









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.