Subscribe free to our newsletters via your
. Solar Energy News .




SOLAR DAILY
New approach combines biomass conversion, solar energy conversion
by Staff Writers
Madison WI (SPX) Mar 11, 2015


Chemistry Professor Kyoung-Shin Choi (right) and postdoctoral researcher Hyun Gil Cha (left) have developed an innovative approach to combining solar energy conversion and biomass conversion. Image courtesy UW-Madison Chemistry Department.

In a study published in Nature Chemistry, University of Wisconsin-Madison chemistry Professor Kyoung-Shin Choi presents a new approach to combine solar energy conversion and biomass conversion, two important research areas for renewable energy.

For decades, scientists have been working to harness the energy from sunlight to drive chemical reactions to form fuels such as hydrogen, which provide a way to store solar energy for future use. Toward this end, many researchers have been working to develop functional, efficient and economical methods to split water into hydrogen, a clean fuel, and oxygen using photoelectrochemical solar cells (PECs).

Although splitting water using an electrochemical cell requires an electrical energy input, a PEC can harness solar energy to drive the water-splitting reaction. A PEC requires a significantly reduced electrical energy input or no electrical energy at all.

In a typical hydrogen-producing PEC, water reduction at the cathode (producing hydrogen) is accompanied by water oxidation at the anode (producing oxygen). Although the purpose of the cell is not the production of oxygen, the anode reaction is necessary to complete the circuit.

Unfortunately, the rate of the water oxidation reaction is very slow, which limits the rate of the overall reaction and the efficiency of the solar-to-hydrogen conversion. Therefore, researchers are currently working to develop more efficient catalysts to facilitate the anode reaction.

Choi, along with postdoctoral researcher Hyun Gil Cha, chose to take a completely new approach to solve this problem. They developed a novel PEC setup with a new anode reaction. This anode reaction requires less energy and is faster than water oxidation while producing an industrially important chemical product.

The anode reaction they employed in their study is the oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA). HMF is a key intermediate in biomass conversion that can be derived from cellulose - a type of cheap and abundant plant matter. FDCA is an important molecule for the production of polymers.

Biomass conversion can offer a viable pathway to generate chemicals used in industrial processes without using petroleum products. Conventional biomass conversion processes use high-pressure oxygen for the conversion of HMF to FDCA at high temperatures. Choi and Cha, however, developed an efficient electrochemical method to oxidize HMF to FDCA at room temperature and ambient pressure using water as the oxygen source.

Then they employed this oxidation reaction as the anode reaction of the PEC that produces hydrogen at the cathode. By doing so, they demonstrated the utility of solar energy for biomass conversion as well as the feasibility of using an oxidative biomass conversion reaction as an anode reaction in a hydrogen-forming PEC.

"Since the photoelectrochemical cell is built for the purpose of hydrogen production and HMF oxidation simply replaces oxygen production at the anode, in essence, no resources are used specifically for HMF oxidation," says Choi.

In other words, FDCA is a bonus byproduct from a PEC that generates hydrogen. The production of FDCA, a valuable chemical, at the anode lowers the production cost for hydrogen. This new approach therefore presents new possibilities for research in both solar conversion and biomass conversion.

"When we first started this study, we were not sure whether our approach could be really feasible," Choi says. "However, since we knew that the impact of the study could be high when successful, we decided to invest our time and effort on this new research project at the interface of biomass conversion and solar energy conversion."

Developing and optimizing every piece of the full solar cell setup demonstrated in the study took the researchers about two years. Choi expects that the development of more diverse and efficient electrochemical and solar-driven biomass conversion processes will increase the efficiency and utility of solar-fuel-producing PECs.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Wisconsin-Madison
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





SOLAR DAILY
Solar cells get growth boost
Okinawa, Japan (SPX) Mar 06, 2015
Researchers at the Okinawa Institute of Science and Technology Graduate University's (OIST) Energy Materials and Surface Sciences Unit have found that growing a type of film used to manufacture solar cells in ambient air gives it a growth boost. The finding, which could make manufacturing solar cells significantly cheaper, was published in Chemistry of Materials. The type of material is ca ... read more


SOLAR DAILY
Bioelectrochemical processes have the potential to one day replace petrochemistry

Biofuel proteomics

Miscanthus-based ethanol boasts higher profits

Metabolic path to improved biofuel production

SOLAR DAILY
Kids and robots learn to write together

Rise of the Machines: video gamers beware

Japan's Robear: Strength of a robot, face of a bear

HAPTIX Starts Work to Provide Prosthetic Hands with Sense of Touch

SOLAR DAILY
Wind energy: TUV Rheinland supervises Senvion sale

Bright spot for wind farms amid RET gloom

Allianz acquire OX2 wind farm in northern Sweden

No surprises for wind industry in NHMRC report

SOLAR DAILY
Understanding electric car 'range anxiety' could be key to wider acceptance

Making our highways safer and more efficient

Car industry welcomes Google, Apple but battles loom

Uber discloses data breach, theft of license numbers

SOLAR DAILY
Big box stores could ditch the grid, use natural gas fuel cells instead

Breakthrough in OLED technology

Glass coating improves battery performance

CWRU researchers bring clean energy a step closer

SOLAR DAILY
Fukushima Nuclear Exiles in No Hurry to Return Home

TEPCO Pledges to Reveal All Data on Fukushima Radioactive Contamination

China Should Speed Up Its Nuclear Development to Meet 2020 Goals

British nuclear site clean-up costs soar

SOLAR DAILY
China to further streamline energy layout amid "new normal"

Reducing emissions with a more effective carbon capture method

Europe still off mark on sustainability goals: report

Philippines to send home Chinese energy experts

SOLAR DAILY
Munching bugs thwart eager trees, reducing the carbon sink

Greenpeace rebukes paper giant over farmer's death

Modern logging techniques benefit rainforest wildlife

Massive amounts of Saharan dust fertilize the Amazon rainforest




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.