Subscribe free to our newsletters via your
. Solar Energy News .




SOLAR DAILY
Scientists discover how plastic solar panels work
by Staff Writers
Montreal, Canada (SPX) Jul 03, 2014


Three laser beams are needed to record the excited vibrational modes of PCDTBT with the method called femtosecond stimulated Raman spectroscopy. First, the green pulse is absorbed by the polymer, just as sunlight would be in a solar cell, which creates the excited state. Then, a pair of infra-red and white pulses probe this excited vibrational mode. Very short pulses of light and precise timing enable an impressive time resolution of less than 300 femtoseconds. Image courtesy University of Montreal.

Scientists don't fully understand how 'plastic' solar panels work, which complicates the improvement of their cost efficiency, thereby blocking the wider use of the technology. However, researchers at the University of Montreal, the Science and Technology Facilities Council, Imperial College London and the University of Cyprus have determined how light beams excite the chemicals in solar panels, enabling them to produce charge.

"Our findings are of key importance for a fundamental mechanistic understanding, with molecular detail, of all solar conversion systems - we have made great progress towards reaching a 'holy grail' that has been actively sought for several decades," said the study's first author, Francoise Provencher of the University of Montreal. The findings were published in Nature Communications.

The researchers have been investigating the fundamental beginnings of the reactions that take place that underpin solar energy conversion devices, studying the new brand of photovoltaic diodes that are based on blends of polymeric semiconductors and fullerene derivatives.

Polymers are large molecules made up of many smaller molecules of the same kind - consisting of so-called 'organic' building blocks because they are composed of atoms that also compose molecules for life (carbon, nitrogen, sulphur). A fullerene is a molecule in the shape of a football, made of carbon.

"In these and other devices, the absorption of light fuels the formation of an electron and a positive charged species. To ultimately provide electricity, these two attractive species must separate and the electron must move away. If the electron is not able to move away fast enough then the positive and negative charges simple recombine and effectively nothing changes.

The overall efficiency of solar devices compares how much recombines and how much separates," explained Sophia Hayes of the University of Cyprus, last author of the study.

Two major findings resulted from the team's work. "We used femtosecond stimulated Raman spectroscopy," explained Tony Parker of the Science and Technology Facilities Council's Central Laser Facility.

"Femtosecond stimulated Raman spectroscopy is an advanced ultrafast laser technique that provides details on how chemical bonds change during extremely fast chemical reactions. The laser provides information on the vibration of the molecules as they interact with the pulses of laser light." Extremely complicated calculations on these vibrations enabled the scientists to ascertain how the molecules were evolving.

Firstly, they found that after the electron moves away from the positive centre, the rapid molecular rearrangement must be prompt and resemble the final products within around 300 femtoseconds (0.0000000000003 s). A femtosecond is a quadrillionth of a second - a femtosecond is to a second as a second is to 3.7 million years. This promptness and speed enhances and helps maintain charge separation.

Secondly, the researchers noted that any ongoing relaxation and molecular reorganisation processes following this initial charge separation, as visualised using the FSRS method, should be extremely small.

"Our findings open avenues for future research into understanding the differences between material systems that actually produce efficient solar cells and systems that should as efficient but in fact do not perform as well. A greater understanding of what works and what doesn't will obviously enable better solar panels to be designed in the future," said the University of Montreal's Carlos Silva, who was senior author of the study.

.


Related Links
University of Montreal
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





SOLAR DAILY
German MPs adopt cuts for green energy subsidies
Berlin (AFP) June 27, 2014
German lawmakers adopted a law on Friday to reduce renewable energy subsidies as the government seeks to keep its green "energy transformation" on track, curb rising prices and fight nagging criticism. The reform of the "Energiewende" is one of the first big projects of Chancellor Angela Merkel's third term, together with a national minimum wage, and has been a political hot potato both in G ... read more


SOLAR DAILY
A Win-Win-Win Solution for Biofuel, Climate, and Biodiversity

Water-cleanup catalysts tackle biomass upgrading

In Austria, heat is 'recycled' from the sewer

Genome could unlock eucalyptus potential for paper, fuel and fiber

SOLAR DAILY
Collaborative learning -- for robots

IBM's Watson app whips up Big Data in the kitchen

Japan unveils 'world's first' android newscaster

Japan robot firm showcases thought-controlled suits

SOLAR DAILY
VentAir Introduces Groundbreaking Wind Energy Innovation

Offshore wind dominates British renewable power sector

Great progress on wind installations, Germany's RWE says

Scotland boasts of financial weight behind climate change fight

SOLAR DAILY
Google Android software spreading to cars, watches, TV

Toyota names price for new fuel cell car

NMSU PACE team develops mobile transportation device

Hybrid Vehicles More Fuel Efficient In India, China Than in US

SOLAR DAILY
Israeli companies order Aura's power generation system

Study helps unlock mystery of high-temp superconductors

Cambridge team breaks superconductor world record

Researchers developing cheap, better-performing lithium-ion batteries

SOLAR DAILY
Angry scenes as Japan's TEPCO shareholders demand end to nuclearw

Fukushima operator eyes wholesale power market in Europe: report

Westinghouse Extends New-plant Market with Specialized Seismic Option

Single Optical Fiber Combines 100s Of Sensors To Monitor Harsh Environments

SOLAR DAILY
Malware aims at US, Europe energy sector: researchers

Net energy analysis should become a standard policy tool

New voluntary measure aimed at protecting U.S. energy from cyberattacks

Zimbabwe switches $1.3 bn China power tender: minister

SOLAR DAILY
Australian greens hail Tasmanian Wilderness decision

Conifers may give way to a more broad-leafed forest in the next century

Discovery of a bud-break gene could lead to trees adapted for a changing climate

UNESCO says all of Tasmanian forest to stay protected




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.