Solar Energy News  
SOLAR DAILY
Simplifying solar cells with a new mix of materials
by Staff Writers
Berkeley CA (SPX) Jan 29, 2016


In this illustration, the top images show a cross-section of a solar cell design, called DASH, that uses a combination of moly oxide and lithium fluoride. This combination of materials allows the device to achieve high efficiency in converting sunlight to energy without the need for a process known as doping. The bottom images shows the dimensions of the DASH solar cell components. Image courtesy Nature Energy: 10.1038/nenergy.2015.31. For a larger version of this image please go here.

An international research team has simplified the steps to create highly efficient silicon solar cells by applying a new mix of materials to a standard design. Arrays of solar cells are used in solar panels to convert sunlight to electricity.

The special blend of materials - which could also prove useful in semiconductor components - eliminates the need for a process known as doping that steers the device's properties by introducing foreign atoms to its electrical contacts. This doping process adds complexity to the device and can degrade its performance.

"The solar cell industry is driven by the need to reduce costs and increase performance," said James Bullock, the lead author of the study, published this week in Nature Energy. Bullock participated in the study as a visiting researcher at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley.

"If you look at the architecture of the solar cell we made, it is very simple," said Bullock, of Australian National University (ANU). "That simplicity can translate to reduced cost."

Other scientists from Berkeley Lab, UC Berkeley, ANU and The Swiss Federal Institute of Technology of Lausanne (EPFL) also participated in the study.

Bullock added, "Conventional silicon solar cells use a process called impurity doping, which does bring about a number of limitations that are making further progress increasingly difficult."

Most of today's solar cells use crystalline silicon wafers. The wafer itself, and sometimes the layers deposited on the wafer, are doped with atoms that either have electrons to spare when they bond with silicon atoms, or alternatively generate electron deficiencies, or "holes." In both cases, this doping enhances electrical conductivity.

In these devices, two types of dopant atoms are required at the solar cell's electrical contacts to regulate how the electrons and holes travel in a solar cell so that sunlight is efficiently converted to electrical current that flows out of the cell.

Crystalline silicon-based solar cells with doped contacts can exceed 20 percent efficiency - meaning more than 20 percent of the sun's energy is converted to electricity. A dopant-free silicon cell had not previously exceeded 14 percent efficiency.

The new study, though, demonstrated a dopant-free silicon cell, referred to as a DASH cell (dopant free asymmetric heterocontact), with an average efficiency above 19 percent. This increased efficiency is a product of the new materials and a simple coating process for layers on the top and bottom of the device. Researchers showed it's possible to create their solar cell in just seven steps.

In this study, the research team used a crystalline silicon core (or wafer) and applied layers of dopant-free type of silicon called amorphous silicon.

Then, they applied ultrathin coatings of a material called molybdenum oxide, also known as moly oxide, at the sun-facing side of the solar cell, and lithium fluoride at the bottom surface. The two layers, having thicknesses of tens of nanometers, act as dopant-free contacts for holes and electrons, respectively.

"Moly oxide and lithium fluoride have properties that make them ideal for dopant-free electrical contacts," said Ali Javey, program leader of Electronic Materials at Berkeley Lab and a professor of Electrical Engineering and Computer Sciences at UC Berkeley.

Both materials are transparent, and they have complementary electronic structures that are well-suited for solar cells.

"They were previously explored for other types of devices, but they were not carefully explored by the crystalline silicon solar cell community," said Javey, the lead senior author of the study.

Javey noted that his group had discovered the utility of moly oxide as an efficient hole contact for crystalline silicon solar cells a couple of years ago. "It has a lot of defects, and these defects are critical and important for the arising properties. These are good defects," he said.

Stefaan de Wolf, another author who is team leader for crystalline silicon research at EPFL in Neuchatel, Switzerland, said, "We have adapted the technology in our solar cell manufacturing platform at EPFL and found out that these moly oxide layers work extremely well when optimized and used in combination with thin amorphous layer of silicon on crystalline wafers. They allow amazing variations of our standard approach."

In the study, the team identified lithium fluoride as a good candidate for electron contacts to crystalline silicon coated with a thin amorphous layer. That layer complements the moly oxide layer for hole contacts.

The team used a room-temperature technique called thermal evaporation to deposit the layers of lithium fluoride and moly oxide for the new solar cell. There are many other materials that the research teams hopes to test to see if they can improve the cell's efficiency.

Javey said there is also promise for adapting the material mix used in the solar cell study to improve the performance of semiconductor transistors. "There's a critical need to reduce the contact resistance in transistors so we're trying to see if this can help."

Research paper: Efficient silicon solar cells with dopant-free asymmetric heterocontacts


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Lawrence Berkeley National Laboratory
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SOLAR DAILY
Australia doubles down on large-scale solar with launch of largest power plants
Melbourne, Australia (SPX) Jan 26, 2016
The Clean Energy Council has congratulated its members AGL and First Solar on the launch of the large-scale solar power plants in Broken Hill and Nyngan today, which have doubled the amount of large-scale solar built in Australia. Clean Energy Council Chief Executive Kane Thornton said the landmark projects will make it easier for others to follow. "Australia has some of the most int ... read more


SOLAR DAILY
UCR research advances oil production in yeast

Assessment aims to maximize greenhouse gas reductions from bioenergy

One-stop shop for biofuels

Automakers' green push lifts use of hemp, citrus peel

SOLAR DAILY
Microbots individually controlled using 'mini force fields'

Russian Scientists Developing Avatar Robot for Extraterrestrial Exploration

NASA Marshall Center to Host FIRST Robotics Kick-Off at USSRC

Will computers ever truly understand what we're saying

SOLAR DAILY
Health concerns in wind energy developments

OX2 sells 42 MW wind farm to IKEA in Finland

E.ON readies wind farm for English Channel

Strong winds help Denmark set wind energy world record

SOLAR DAILY
Germany approves scandal-hit VW's recall plan for 2.0-litre cars

Toyota keeps top global automaker crown, sells 10.15 mn in 2015

Conductive concrete could keep roads safer in winter weather

Head of Apple electric car team to leave: report

SOLAR DAILY
Corvus Energy announces new performance specifications for lithium ion battery systems

Creation of Jupiter interior, a step towards room temp superconductivity

Non-platinum catalysts for fuel cells remain a mystery

Researchers prove surprising chemistry inside a potential breakthrough battery

SOLAR DAILY
Chinese nuclear firm named world's 5th largest

Russia Pledges $300,000 to IAEA's Innovative Nuclear Reactors Project

Turkey to continue current joint energy projects with Russia

Total nuclear power capacity in China to double by 2020

SOLAR DAILY
Australian farmers to benefit from renewables boost

War Between Saudi Arabia And Iran Could Send Oil Prices To $250

China 2015 electricity output down 0.2 percent

Clean energy to conquer new markets in 2016

SOLAR DAILY
New trial opens in Costa Rica environmentalist's murder

NUS study shows the causes of mangrove deforestation in Southeast Asia

The Amazon's future

Tens of millions of trees in danger from California drought









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.