Subscribe free to our newsletters via your
. Solar Energy News .




SOLAR DAILY
Solar cell polymers with multiplied electrical output
by Staff Writers
Upton NY (SPX) Jan 13, 2015


Postdoctoral fellow Erik Busby and Matt Sfeir with optical equipment they used to study charge carrier production in organic photovoltaic polymers at Brookhaven Lab's Center for Functional Nanomaterials. Image courtesy Brookhaven National Laboratory.

One challenge in improving the efficiency of solar cells is that some of the absorbed light energy is lost as heat. So scientists have been looking to design materials that can convert more of that energy into useful electricity. Now a team from the U.S. Department of Energy's Brookhaven National Laboratory and Columbia University has paired up polymers that recover some of that lost energy by producing two electrical charge carriers per unit of light instead of the usual one.

"Critically, we show how this multiplication process can be made efficient on a single molecular polymer chain," said physicist Matthew Sfeir, who led the research at Brookhaven Lab's Center for Functional Nanomaterials, a DOE Office of Science User Facility. Having the two charges on the same molecule means the light-absorbing, energy-producing materials don't have to be arrayed as perfect crystals to produce extra electrical charges.

Instead, the self-contained materials work efficiently when dissolved in liquids, which opens the way for a wide range of industrial scale manufacturing processes, including "printing" solar-energy-producing material like ink.

The research is published as an Advance Online Publication in Nature Materials.

The concept of producing two charges from one unit of light is called "singlet fission." (Think of the fission that splits a single biological cell into two when cells multiply.) Devices based on this multiplication concept have the potential to break through the upper limit on the efficiency of so-called single junction solar cells, which is currently around 34 percent.

The challenges go beyond doubling the electrical output of the solar cell materials, because these materials must be incorporated into actual current-producing devices. But the hope is that the more-efficient current-generating materials could be added on to existing solar cell materials and device structures, or spark new types of solar cell designs.

Most singlet fission materials explored so far result in twin charge carriers being produced on separate molecules. These only work well when the material is in a crystalline film with long-range order, where strong coupling results in an additional charge being produced on a neighboring molecule. Producing such high quality crystalline films and integrating them with solar cell manufacturing complicates the process.

Producing the twin charges on a single polymer molecule, in contrast, results in a material that's compatible with a much wider variety of industrial processes.

The materials were designed and synthesized by a Columbia University team led by Professor Luis Campos, and analyzed at Brookhaven using specialized tools at the CFN and in the Chemistry Department. For Sfeir and Campos, the most fascinating part of the interdisciplinary project was exploring the electronic and chemical requirements that enable this multiplication process to occur efficiently.

"We expect a significant leap in the development of third-generation, hot-carrier solar cells," said Campos. "This approach is especially promising because the materials' design is modular and amenable to current synthetic strategies that are being explored in second-generation organic solar cells."

Details of the materials' analysis
At the CFN, Sfeir and Erik Busby (a postdoctoral fellow) used time-resolved optical spectroscopy to induce and quantify singlet fission in the various polymer compositions using a single laser photon. Xiaoyang Zhu of Columbia helped to understand the data and interpret results.

"We put light energy into a material with a laser pulse and watch what happens to that energy using a series of weaker light pulses - somewhat analogous to taking snapshots using a camera with a very fast shutter," Sfeir said.

The team also studied the same process using "pulse radiolysis" in collaboration with John Miller, who runs the Laser-Electron Accelerator Facility.

"The differences observed between these two experiments allowed us to unambiguously identify singlet fission as the primary process responsible for the production of these twin charges," Sfeir said.

With Qin Wu, the team also used a powerful computer cluster at the CFN to model these materials and understand the design requirements that were necessary for singlet fission to take place.

"The ideas for this project and supervision of the work were really shared between Brookhaven and Columbia," Sfeir said. "It's a great example of the kind of collaborative work that takes place at DOE user facilities like the CFN."

The next steps for the CFN-Columbia team will be to test a large class of materials using the design framework they've identified, and then integrate some of these carbon-based polymer materials into functioning solar cells.

"Even though we have demonstrated the concept of multiplication in single molecules, the next challenge is to show we can harness the extra excitations in an operating device. This may be in conventional bulk type solar cells, or in third-generation concepts based on other inorganic (non-carbon) nanomaterials. The dream is to build hot-carrier solar cells that could be fully assembled using solution processing of our organic singlet fission materials."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
DOE/Brookhaven National Laboratory
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR DAILY
SAfrica awards solar thermal power project to consortium
Johannesburg, South Africa (SPX) Jan 11, 2015
The South Africa Department of Energy (DOE) awarded preferred bidder status for a 100 megawatt (MW) Concentrating Solar Power (CSP) project to a consortium led by SolarReserve, a leading global developer of utility-scale solar power projects and advanced solar thermal technology, and International Company for Water and Power Projects (ACWA Power), the Saudi water and power developer, owner and o ... read more


SOLAR DAILY
Algae.Tec Signs Agreement for Entry into Greater China

EPA wants cleaner wood-burning fires, new rules expected by February

Plant genetic advance could lead to more efficient conversion of plant biomass to biofuels

Guelph Researchers Recipe: Cook Farm Waste into Energy

SOLAR DAILY
Robots learn to use tools by watching YouTube videos

I, Tormentum

QinetiQ North America refurbishing, modernizing Talon robots used by the military

Pitt team publishes new findings from mind-controlled robot arm project

SOLAR DAILY
ConEd Development acquires wind farm on South Dakota ranch

295 MW German wind farm ready to go

Panama makes climate splash with wind energy

China snaps up UK wind farms

SOLAR DAILY
China 2014 auto sales beat 23 mn, but growth slows

Emissions-free cars get closer

New transport options aim to be 'un-Segway'

Do sports cars have a future in a driverless world?

SOLAR DAILY
Glass for battery electrodes

DARPA starts research project on energy conversion materials

Compact batteries enhanced by spontaneous silver matrix formations

Aquion Energy to build microgrid battery system in Hawaii

SOLAR DAILY
Britain axes deal to clean up Sellafield

Rio Tinto to Export Australian Uranium to India Within Next Two Years

China pursues "rationality" in nuclear safety

French govt minister calls for new generation of reactors

SOLAR DAILY
Health, not money, inspires people to save power

Energy companies investing in one another

House vows to deliver on energy promises

How Climate Change Could Leave Cities in the Dark

SOLAR DAILY
NASA Finds Good News on Forests and Carbon Dioxide

European fire ant impacts forest ecosystems by helping alien plants spread

Muddy forests, shorter winters present challenges for loggers

Ecuador returning German money in environment row




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.