Solar glasses generate solar power by Staff Writers Karlsruher, Germany (SPX) Aug 07, 2017
Organic solar cells are flexible, transparent, and light-weight - and can be manufactured in arbitrary shapes or colors. Thus, they are suitable for a variety of applications that cannot be realized with conventional silicon solar cells. In the Energy Technology journal, researchers from KIT now present sunglasses with colored, semitransparent solar cells applied onto lenses that supply a microprocessor and two displays with electric power. This paves the way for other future applications such as the integration of organic solar cells into windows or overhead glazing. "We bring solar power to places where other solar technologies fail," says Dr. Alexander Colsmann, Head of Organic Photovoltaics Group at KIT's Light Technology Institute (LTI). The "smart" Solar Glasses designed as a case study by the scientist and his team at KIT, is self-powered to measure and display the solar illumination intensity and ambient temperature. The solar cell lenses, perfectly fitted to a commercial frame, have a thickness of approx. 1.6 millimeters and weigh about six grams - just like the lenses of traditional sunglasses. The microprocessor and the two small displays are integrated into the temples of the Solar Glasses. They show the illumination intensity and the ambient temperature as bar graphs. The Solar Glasses also work in indoor environments under illumination down to 500 Lux, which is the usual illumination of an office or a living area. Under these conditions, each of the "smart" lenses still generates 200 milliwatt of electric power - enough to operate devices such as a hearing aid or a step counter. "The Solar Glasses we developed are an example of how organic solar cells may be employed in applications that would not be feasible with conventional photovoltaics," stresses PhD student Dominik Landerer who largely contributed to the development of the solar glasses at the Material Research Center for Energy Systems of KIT. In the eyes of the engineer, these solar cells, which are based on hydrocarbons, are very exciting devices due to their mechanical flexibility and the opportunity to adapt their color, transparency, shape, and size to the desired application. According to Colsmann, another field of application is the integration of solar cells into buildings: Since the glass facades of high-rise buildings must often be shaded, it is an obvious option to use organic solar modules for transforming the absorbed light into electric power. A future vision for the engineer, who works on the basic understanding of organic solar cell and semiconductor components at the Material Research Center for Energy Systems, is to coat large surfaces with organic solar cells using reel-to-reel technology. The KIT researchers present their study on solar sunglasses, entitled "Solar Glasses: A Case Study on Semitransparent Organic Solar Cells for Self-Powered, Smart Wearable Devices", in the Energy Technology journal. Their research was funded by the BMBF (Federal Ministry of Education and Research) within the scope of the POPUP project which is aimed at developing novel materials and device structures suitable for competitive mass production processes and applications in the field of organic photovoltaics. Dominik Landerer, Daniel Bahro, Holger Rohm, Manuel Koppitz, Adrian Mertens, Felix Manger, Fabian Denk, Michael Heidinger, Thomas Windmann, and Alexander Colsmann: Solar Glasses: A Case Study on Semitransparent Organic Solar Cells for Self-Powered, Smart Wearable Devices. Energy Technology 2017. DOI: 10.1002/ente.201700226,
Tempe AZ (SPX) Jul 31, 2017 Every day, enough sunlight hits the Earth to power the planet many times over - if only we could more efficiently capture all the energy. With today's solar panels limited by their efficiency (currently, more than 80 percent of available solar energy is lost as heat), scientists have been looking into nature as inspiration to better understanding the way photosynthetic plants and bacteria ... read more Related Links Karlsruher Institut fur Technologie All About Solar Energy at SolarDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |