Sun-soaking device turns water into superheated steam by Staff Writers Boston MA (SPX) Dec 13, 2018
MIT engineers have built a device that soaks up enough heat from the sun to boil water and produce "superheated" steam hotter than 100 degrees Celsius, without any expensive optics. On a sunny day, the structure can passively pump out steam hot enough to sterilize medical equipment, as well as to use in cooking and cleaning. The steam may also supply heat to industrial processes, or it could be collected and condensed to produce desalinated, distilled drinking water. The researchers previously developed a sponge-like structure that floated in a container of water and turned the water it absorbed into steam. But a big concern is that contaminants in the water caused the structure to degrade over time. The new device is designed to be suspended over the water, to avoid any possible contamination. The suspended device is about the size and thickness of a small digital tablet or e-reader, and is structured like a sandwich: The top layer is made from a material that efficiently absorbs the sun's heat, while the bottom layer efficiently emits that heat to the water below. Once the water reaches the boiling point (100 C), it releases steam that rises back up into the device, where it is funneled through the middle layer - a foam-like material that further heats the steam above the boiling point, before it's pumped out through a single tube. "It's a completely passive system - you just leave it outside to absorb sunlight," says Thomas Cooper, assistant professor of mechanical engineering at York University, who led the work as a postdoc at MIT. "You could scale this up to something that could be used in remote climates to generate enough drinking water for a family, or sterilize equipment for one operating room." The team's results are detailed in a paper to be published in Nature Communications. The study includes researchers from the lab of Gang Chen, the Carl Richard Soderberg Professor of Power Engineering at MIT.
A clever combination The team decided to design a device that instead is suspended above water. The device is structured to absorb short-wavelength solar energy, which in turn heats up the device, causing it to reradiate this heat, in the form of longer-wavelength infrared radiation, to the water below. Interestingly, the researchers note that infrared wavelengths are more readily absorbed by water, versus solar wavelengths, which would simply pass right through. For the device's top layer, they chose a metal ceramic composite that is a highly efficient solar absorber. They coated the structure's bottom layer with a material that easily and efficiently emits infared heat. Between these two materials, they sandwiched a layer of reticulated carbon foam - essentially, a sponge-like material studded with winding tunnels and pores, which retains the sun's incoming heat and can further heat up the steam rising back up through the foam. The researchers also attached a small outlet tube to one end of the foam, through which all the steam can exit and be easily collected. Finally, they placed the device over a basin of water and surrounded the entire setup with a polymer enclosure to prevent heat from escaping. "It's this clever engineering of different materials and how they're arranged that allows us to achieve reasonably high efficiencies with this noncontact arrangement," Cooper says.
Full steam ahead On Oct. 21, 2017, they tested the device on the roof of MIT's Building 1, under ambient conditions. The day was clear and bright, and to increase the sun's intensity further, the researchers constructed a simple solar concentrator - a curved mirror that helps to collect and redirect more sunlight onto the device, thus raising the incoming solar flux, similar to the way a magnifying glass can be used to concentrate a sun's beam to heat up a patch of pavement. With this added shielding, the structure produced steam in excess of 146 C over the course of 3.5 hours. In subsequent experiments, the team was able to produce steam from sea water, without contaminating the surface of the device with salt crystals. In another set of experiments, they were also able to collect and condense the steam in a flask to produce pure, distilled water. Chen says that, in addition to overcoming the challenges of contamination, the device's design enables steam to be collected at a single point, in a concentrated stream, whereas previous designs produced more dilute spray. "This design really solves the fouling problem and the steam collection problem," Chen says. "Now we're looking to make this more efficient and improve the system. There are different opportunities, and we're looking at what are the best options to pursue."
A 3D imaging technique unlocks properties of perovskite crystals University Park PA (SPX) Dec 07, 2018 A team of materials scientists from Penn State, Cornell and Argonne National Laboratory have, for the first time, visualized the 3D atomic and electron density structure of the most complex perovskite crystal structure system decoded to date. Perovskites are minerals that are of interest as electrical insulators, semiconductors, metals or superconductors, depending on the arrangement of their atoms and electrons. Perovskite crystals have an unusual grouping of oxygen atoms that form an octah ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |