The interface makes the difference in Perovskite-based solar cells by Staff Writers Barcelona, Spain (SPX) Apr 15, 2019
A collaboration led by ICIQ's Palomares group deepens the understanding of the impact that changing the materials in a perovskite solar cell has on its performance. The results, published in the peer-reviewed journal Energy and Environmental Science, will help rationalize the design of the components of cells, thus increasing their commercial appeal. Perovskite-based solar cells are the fastest-advancing solar technology to date. Since they were first used in 2009, perovskite solar cells have achieved high efficiencies (over 22% under standard solar irradiation) at low production costs. Although most of the perovskite components are optimized, there's still room for improvement. Especially in reference to the Hole Transport Materials (HTMs) employed. Perovskite solar cells with different materials as HTMs also present different colours. Credit: ICIQ The collaboration, among researchers from ICIQ's Palomares and Vidal groups, the Physical Chemistry of Surfaces and Interfaces group at the Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC) and IMDEA Nanocienca, sheds light on the reasons behind the differences observed in perovskite solar cells' performance by comparing four different HTMs that present close chemical and physical properties.
Little changes can be powerful Looking for molecules with similar electrical and optic characteristics than spiro-OMeTAD and hoping to get similar results. But when testing new HTMs, instead of getting similar results, the cells worked very badly. So, we decided to understand why this happened," explains Nuria F. Montcada, a postdoctoral researcher at the Palomares group and one of the first authors of the paper. The researchers realized that new molecules with the potential to replace spiro-OMeTAD as HTM were selected on the basis to their properties in solution. However, in functional solar cells, these molecules are prepared in the form of thin films whose surfaces, in turn, are placed in contact with other materials, forming interfaces. The created interfaces may confer changes in the properties of the molecules. Through the collaboration with ICMAB scientists, the surface work function of each HTM layer on perovskites solar cells was measured to find that "Spiro-OMeTAD energy levels align perfectly with respect to the other components of the cell, while the energetic landscape is less favorable for layers of the new HTM molecules tested. Surfaces and interfaces created in the solar cell stack have a crucial role in the functional device performances," says Carmen Ocal, researcher at ICMAB. "We have to be aware that the perovskite-HTM interface may shift the energy levels and produce undesired energy misalignments. We've come to demonstrate that the study of molecules needs to match the conditions under which the molecule is going to be used - otherwise molecule design is just trial and error," concludes Montcada.
Helping flexible solar panels last longer Eindhoven, The Netherlands (SPX) Apr 08, 2019 Researchers at Holst Centre and DuPont Teijin Films have created a high-performance yet cost-effective roll-to-roll barrier solution designed specifically for flexible photovoltaic (PV) cells. This production-ready solution combines Holst Centre's advanced barrier technology with DuPont Teijin Films' Peelable Clean Surface film. It could help extend the yield and working lifetime of organic, perovskite and CIGS PV cells, opening the door to cheaper, environmentally-friendly solar generation in mor ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |