UNIST researchers develop highly stable perovskite solar cells by Staff Writers Ulsan, South Korea (SPX) Oct 26, 2017
A recent study, affiliated with UNIST has presented a highly stable perovskite solar cells (PSCs), using edged-selectively fluorine (F) functionalized graphene nano-platelets (EFGnPs). This breakthrough has gotten much attention as it is made out of fluorine, a low-cost alternative to gold. A recent study, affiliated with UNIST has presented a highly stable perovskite solar cells (PSCs), using edged-selectively fluorine (F) functionalized graphene nano-platelets (EFGnPs). This breakthrough has gotten much attention as it is made out of fluorine, a low-cost alternative to gold. This study has been jointly led by Professor Jin Young Kim in the School of Energy and Chemical Engineering at UNIST in collaboration with Dong Suk Kim of Korea Institute of Energy Research (KIER). Assistant Professor Gi-Hwan Kim in the School of Energy and Chemical Engineering at UNIST partook in this study, as the lead author. The findings of the study has been published in the September issue of the prestigious journal, Nano Letters. Perovskite solar cells (PSCs) have attracted more attention in the past few years, as the next-generation solar cells with the potential to surpass silicon cells' efficiency. Nevertheless, stability and cost issues in PSCs seem to block further advancements toward commercialization. The perovskite materials are easily decomposed in moisture conditions. They cannot survive even for one day without proper encapsulation and this results in low stability. To solve these issues and make progress toward the commercialization of PSCs, Professor Kim and his team introduced a highly stable p-i-n structure for PSCs using fluorine functionalized EFGnPs to fully cover the perovskite active layer and protect against the ingress of water for high-stability PSCs. "Fluorocarbons, such as polytetrafluoroethylene (Teflon) are well-known for their superhydrophobic properties and comprise carbon fluorine (C-F) bonding," says Professor Gwi-Hwan Kim at UNIST. "By substituting carbon for fluorine, we have created a two-dimensional material with high hydrophobicity, like Teflon. Then, applied it to PSCs. " "This study overcame weakness of perovskite solar cells that have high efficiencies but low stability," says Professor Jin Young Kim. "This breakthrough holds substantial promise as the base technology for the application of the next-generation solar cells, as well as various IoT devices and displays," says Professor Jin Young Kim. The newly-developed perovskite solar cell device was fabricated using solution processes, a process that involves the coating perovskite materials on a flexible film. Using this process allows the future application of solar cells to wearable devices. The next-generation solar cells are advantageous in that they have a simple manufacturing process and a low manufacturing cost, compared the existing silicon-based inorganic electronic devices. Gi-Hwan Kim, et al., "Fluorine Functionalized Graphene Nano Platelets for Highly Stable Inverted Perovskite Solar Cells," Nano Letters, (2017).
Princeton NJ (SPX) Oct 26, 2017 China is rapidly expanding its solar power supply, hoping to meet 10 percent of the nation's electricity needs with solar energy by 2030. But there's a problem: severe air pollution is blocking light from the sun, significantly reducing China's output of solar energy, particularly in the northern and eastern parts of the country. This issue is worst in the winter, when - according to resea ... read more Related Links Ulsan National Institute of Science and Technology All About Solar Energy at SolarDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |