Solar Energy News  
SOLAR DAILY
Using sunlight to the max
by Staff Writers
Thuwal, Saudi Arabia (SPX) Jun 22, 2017


Membrances of MXene have potential for water purification. Image courtesy 2017 KAUST.

Materials called transition-metal carbides have remarkable properties that open new possibilities in water desalination and wastewater treatment. A KAUST team has found compounds of transition metals and carbon, known as a MXenes but pronounced "maxenes," can efficiently evaporate water using power supplied by the sun1.

Renyuan Li, a Ph.D. student at KAUST, has investigated a MXene in which titanium and carbon combine with the formula Ti3C2. "This is a very exciting material," said Associate Professor Peng Wang, Li's supervisor at the KAUST Water Desalination and Reuse Center.

Wang explains his excitement comes from their finding that Ti3C2 can trap the energy of sunlight to purify water by evaporation with an energy efficiency that is "state of the art." He says this clearly justifies more research toward practical applications.

Other researchers had explored the ability of MXenes to act as electromagnetic shielding materials due to their ability to absorb wavelengths of electromagnetic radiation beyond the visible range. So the KAUST discovery began with a simple question. "We decided to investigate, what is the interaction with this MXene and sunlight?" Wang explained. With his group's focus on desalination technology, using the sun's energy to convert water into steam was an obvious target.

The KAUST team's first observation was that Ti3C2 converts the energy of sunlight to heat with 100% efficiency. Also important, however, was that the sophisticated system developed during this research to measure light-to-heat conversion showed that various other materials, including carbon nanotubes and graphene, also achieved almost perfectly efficient conversion.

"I suggest the focus of the field should now move away from finding new photothermal materials toward finding applications for the many perfect ones we now have," said Wang.

To investigate MXene's possibilities in water purification, the researchers then fabricated a thin and flexible Ti3C2 membrane incorporating a polystyrene heat barrier to prevent the heat energy from escaping. This created a system that could float on water and evaporate some of the water with 84% efficiency at the illumination levels of natural sunlight.

For Wang, the next challenge is how to move from this basic research finding toward practical applications. Wang hopes to break through what he calls "the 85% efficiency barrier," taking photo-thermal purification of water into new territory.

In addition to maximizing the system's light-trapping capacity, the researchers want to investigate ways to capture the water vapor and yield a complete water purifying process. Wang is already in talks with one potential industrial partner.

Research Report

SOLAR DAILY
Photopower for microlabs
Tokyo, Japan (SPX) Jun 16, 2017
Miniaturized devices such as microsensors often require an independent, equally miniaturized power supply. Searching for suitable systems, Japanese scientists have now developed a fully integrated microfluidic device that produces hydrogen fuel and converts it into electrical energy based on photocatalysis. As they report in the journal Angewandte Chemie, it works fully autonomously and delivers ... read more

Related Links
King Abdullah University of Science and Technology
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Turning car plastics into foams with coconut oil

Scientists use new technique to recycle plant material into stock chemicals

Splitting carbon dioxide using low-cost catalyst materials

Newly identified gene helps time spring flowering in vital grass crops

SOLAR DAILY
Learning with light: New system allows optical 'deep learning'

Facebook gives bots ability to negotiate, compromise

Apple wants to rock the market with HomePod, faces challenges

Autonomous machines edge towards greater independence

SOLAR DAILY
It's a breeze: How to harness the power of the wind

ADB: Asia-Pacific growth tied to renewables

GE Energy Financial Services Surpasses $15 Billion in Renewable Energy Investments

U.S. states taking up wind energy mantle

SOLAR DAILY
Ford to import Focus cars built in China

China's Mobike raises $600 mn to fund bike-sharing expansion

Wireless charging of moving electric vehicles overcomes major hurdle in new Stanford study

Scientists inch closer to wirelessly charging moving electric vehicles

SOLAR DAILY
Battery improvements spark HEV EV market breakthrough

Liquified gas electrolytes power new lower-temperature battery

Making hydrogen fuel from humid air

Batteries from scrap metal

SOLAR DAILY
Russia sells stake in Akkuyu nuclear plant project in Turkey

Japan court clears way for nuclear reactor restarts

AREVA-EWN consortium to dismantle the Reactor Pressure Vessel at Brunsbuttel

UNIST improves remote detection of hazardous radioactive substances

SOLAR DAILY
Low-carbon trajectory is the only option, European leaders say

Divestment streak continues for British energy company Centrica

New ultrathin material for splitting water could make hydrogen production cheaper

Keeping the hydrogen coming

SOLAR DAILY
Peatlands, already dwindling, could face further losses

Tropical peat forests risk turning from carbon "drains" to emitters

Activists block logging in Poland's ancient forest

Decomposing leaves are surprising source of greenhouse gases









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.