Solar Energy News
SOLAR DAILY
ASU researchers TEAMUP to advance solar power
Researchers in Arizona State University's MacroTechnology Works facility examine a solar cell. ASU researchers Mariana Bertoni, Zachary Holman and Nick Rolston, all electrical engineering faculty members in the Ira A. Fulton Schools of Engineering, are part of the Tandems for Efficient and Advanced Modules using Ultrastable Perovskites, or TEAMUP, consortium of academic and industry partners looking to make tandem perovskite and silicon solar technology commercially viable. Photographer: Erika Gronek/ASU
ASU researchers TEAMUP to advance solar power
by Staff Writers
Tempe AZ (SPX) May 12, 2023

Department of Energy consortium brings together academic and industry partners to maximize perovskite solar technology As climate change becomes a more pressing problem worldwide, the race to develop sustainable power-generation technology is increasingly crucial. A new consortium of academic and industry partners, Tandems for Efficient and Advanced Modules using Ultrastable Perovskites, or TEAMUP, seeks to help mitigate climate change by making a new generation of solar technology commercially viable.

The three-year TEAMUP collaboration, which is planned to start in the fall of 2023, is supported by $9 million in funding from the U.S. Department of Energy. TEAMUP intends to maximize the performance and reliability of tandem solar panels for consumer use.

Tandem refers to solar panels that are made from a combination of two or more cell materials optimized to absorb different sections of the electromagnetic spectrum, or simply put, colors of light.

Halide perovskites are a family of materials that have shown tremendous potential for high performance and low production costs in solar cells. The name "perovskite" comes from the nickname for the materials' crystal structure. Perovskites and silicon absorb different colors of sunlight, resulting in a greater combined efficiency than for panels made from either material alone.

Ultimately, the consortium hopes to use this emerging technology to put the U.S. at the forefront of solar technology manufacturing. The effort aligns with Arizona's New Economy Initiative, which seeks to position the state as a hub for jobs in engineering, technology and advanced manufacturing.

The consortium's work also aligns with the goals of ASU's Advanced Materials, Processes, and Energy Devices, or AMPED, Science and Technology Center, which has photovoltaic, or solar, technology as one of its primary research thrusts.

An academic collaboration for solar innovation
Academic and government partners in the consortium include the Ira A. Fulton Schools of Engineering at Arizona State University; the University of Colorado Boulder; the University of California, Merced; Northwestern University and the National Renewable Energy Laboratory.

ASU's involvement includes research groups run by Assistant Professor Nick Rolston and Associate Professors Mariana Bertoni and Zachary Holman, all electrical engineering faculty members in the School of Electrical, Computer and Energy Engineering, part of the Fulton Schools.

Efforts at the University of Colorado at Boulder, which leads the academic research efforts of the partnership, are run by Professor and James M and Catherine Patten Chair in Chemical Engineering Michael McGehee. Perovskite materials for solar panels are McGehee's area of expertise.

"Mike McGehee was almost like a co-advisor to me when I was doing my doctoral degree at Stanford," Rolston says. "I worked with several of his students in his lab quite frequently."

Rolston estimates that although the University of Colorado leads the consortium's academic investigations, ASU will play just as large a part in the research. Each ASU research group will play a different and complementary role: Rolston's group will examine mechanical macro-level damage limits of the tandem silicon and perovskite panels, Bertoni's group will focus on conducting X-ray characterization of micro-level structural strains during aging and Holman's group will examine how to use the panels' optoelectronic properties to generate as much electricity as possible.

Delivering entrepreneurial impact
Beyond Silicon, which specializes in tandem solar panel technology and was founded by Holman and ASU electrical engineering Assistant Research Professor Zhengshan Yu, is involved with the industry efforts to make the technology viable for commercial and consumer use. Swift Solar and Tandem PV, both tandem solar technology companies based in the San Francisco Bay Area and started by McGehee's former students, round out the industry consortium members.

Under Holman's guidance while a graduate student at ASU, Yu worked with McGehee to develop a tandem solar panel that set a power generation efficiency record. Now as CEO of Beyond Silicon, Yu and the other industry collaborators will focus on making tandem solar technology commercially viable by scaling it up from the small and commercially unviable sizes used in labs.

"The U.S. has lost its photovoltaic manufacturing prominence to countries in Asia," Yu says. "Perovskite and silicon tandem technology is the next opportunity to return the U.S. to a leading position in photovoltaic manufacturing. This technology will make solar technology more affordable to decarbonize the grid and be a key energy generation technology for a sustainable future."

The AMPED STC aids Yu through the Science and Technology Center Entrepreneurial Fellowship Program, which supports private sector entrepreneurship. AMPED provides funding to private sector projects that stimulate research and development in Arizona.

Yu believes that the TEAMUP public-private partnership is a great boost to help industry commercialize tandem solar technology.

"As scientific challenges still remain to make tandem panels commercially viable, a consortium of industry partners plus academic institutions is the best way to achieve that goal," he says.

Developing solar solutions
The ASU research groups will also provide opportunities to students from undergraduate to doctoral levels to conduct hands-on research. Rolston says that students in his group will take part in everything from producing panels to conducting durability testing and analysis.

"The techniques that my research group use basically involve breaking things apart," Rolston says. "We use tensile testers that can rip apart the materials to understand how much energy that takes and what the weak point is."

His group is looking to add more students to aid in the work, especially those in undergraduate and master's degree programs. Involvement can fulfill project requirements for the Fulton Undergraduate Research Initiative and Master's Opportunity for Research in Engineering programs, theses for ASU's Barrett, The Honors College and master's degree programs and more.

Bertoni hopes that the project's findings help to de-risk this new technology, attracting businesses to invest in Arizona.

"I think that if we solve some of the reliability issues and show a path to manufacturability and long-term performance, these perovskite technologies will seed a lot of new ideas and businesses," she says.

Rolston hopes those new businesses could find a home in Arizona, explaining that microelectronics manufacturing infrastructure is similar to that used for solar technology.

"Arizona has such strengths in semiconductors from companies like TSMC and Intel, along with expertise from the workforce," he says. "I think Arizona would be the perfect place to produce solar panels, which would bring a lot of jobs to the state."

Related Links
ASU
All About Solar Energy at SolarDaily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SOLAR DAILY
Unlocking the power of photosynthesis for clean energy production
Rochester NY (SPX) May 11, 2023
As the world faces an increasing demand for clean and sustainable energy sources, scientists are turning to the power of photosynthesis for inspiration. With the goal of developing new, environmentally friendly techniques to produce clean-burning hydrogen fuel, a team of researchers at the University of Rochester is embarking on a groundbreaking project to mimic the natural process of photosynthesis using bacteria to deliver electrons to a nanocrystal semiconductor photocatalyst. In a paper publis ... read more

SOLAR DAILY
New catalyst transforms carbon dioxide into sustainable byproduct

Researchers cultivate microalgae for biofuel production

3D-printed biodegradable seed robot can change shape in response to humidity

Dutch refinery to feed airlines' thirst for clean fuel

SOLAR DAILY
Google to show off AI and Pixel gadget innovations

Health experts 'must raise alarm on AI threats'

EELS slithers into new robotics terrain

AFRL field-tests AI robot to improve DAF manufacturing capability

SOLAR DAILY
European leaders vow to boost North Sea wind energy production

Wind farms drive away certain seabirds: study

Wind project near S.African elephant park riles activists

UK offshore staff 'want public ownership of energy firms'

SOLAR DAILY
UK to roll out first driverless bus service

Protesters throw cake at Volkswagen shareholders' meeting

Demand for electric cars 'booming': IEA

Chinese EV dominance hastens end of petrol engine era

SOLAR DAILY
Europe charges up car battery drive with new plants

Glencore eyes European lithium battery recycling centre

DOE announces $45 million for Inertial Fusion Energy

New concept for lithium-air batteries

SOLAR DAILY
GE Hitachi announces intent to transfer ownership of Vallecitos Nuclear Center

Detecting neutrinos from nuclear reactors with water

Evacuations spur UN watchdog concern over Ukraine nuclear plant

Niger uranium mine set to operate until 2040

SOLAR DAILY
Top court orders French govt to take more climate steps

World near positive 'tipping point' on climate solutions: expert

US moves to curb power plant emissions

Impact of going off-grid on transmission charge and energy market outcomes

SOLAR DAILY
A primal forest encircled by Ecuador port faces ruination

Illegal mining booms in Brazilian Amazon 'promised land'

Secret behind Amazonian 'dark earth' could help speed up forest restoration across the globe

Britain pledges $100 mn for Brazil's Amazon Fund

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.