Solar Energy News  
SOLAR DAILY
A blast of gas for better solar cells
by Staff Writers
Thuwal, Saudi Arabia (SPX) Oct 28, 2020

The team exposed silicon to carbon dioxide in plasma to allow for the controlled deposition of silicon oxide, and then overlaid another layer of silicon.

A simple process for depositing silicon oxide onto silicon wafers could be a great step forward for making silicon-based solar cells. Researchers at KAUST have used a method called plasma processing in a chamber filled with carbon dioxide gas.

The semiconducting element silicon is the material of choice for around 90 percent of solar cell production. When the silicon is doped with selected impurities, the energy from sunlight can kick electrons into generating a flow of electric current.

A technical challenge arises, however, at the exposed surface of the silicon, described by Areej Alzahrani, a KAUST Ph.D. student, as the problem of "dangling bonds." She explains that the reduced availability of silicon atoms to bond together at the surface leaves scope for electrons ejected by light energy to recombine with the positively charged "holes" that the departing electrons leave behind.

This problem can be resolved by generating a layer of silicon oxide at the surface regions used to form electrical contacts in a chemical process called passivation. Several methods can achieve this, but they all come with difficulties and limitations. They also introduce an additional and costly fabrication step. "The problems with existing methods challenged us to find a more simple and practical process," says Alzahrani.

The solution involves exposing the silicon to carbon dioxide in plasma--a low temperature ionized gas. This allows controlled deposition of silicon oxide, followed by the overlaying of another silicon layer, as required for the architecture of a solar cell. Achieving both these steps in the same chamber offers a significant reduction in production costs. "This straightforward and simple process could be of great use to the solar cell industry," Alzahrani concludes.

She points out that the team was surprised by the control that the method achieves over the deposition of an ultrathin silicon oxide layer with the required microstructure. It also generates oxide films that are more stable at high temperatures, overcoming another problem with existing methods. Tests revealed the procedure permits high voltages and low electrical resistance, as required for efficient performance.

Now the team has demonstrated the basic technique, it plans to move to develop its commercial potential. "A first step will be to integrate this process into a complete and working solar cell, while also exploring improved light-capturing designs," says research group leader, Stefaan De Wolf.

Research paper


Related Links
King Abdullah University Of Science and Technology (KAUST)
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Turning streetwear into solar power plants
Dubendorf, Switzerland (SPX) Oct 23, 2020
Our hunger for energy is insatiable, it even continues to rise with the increasing supply of new electronic gadgets. What's more, we are almost always on the move and thus permanently dependent on a power supply to recharge our smartphones, tablets and laptops. In the future, power sockets (at least for this purpose) could possibly become obsolete. The electricity would then come from our own clothes. By means of a new polymer that is applied on textile fibers, jackets, T-shirts and the like could ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Greasezilla Announces Plans to Launch Hub-and-Spoke Regional Systems for Biodiesel Manufacturers in 2021

Microsoft, Alaska Airlines team up for alternative jet fuel

The highest heat-resistant plastic ever is developed from biomass

National laboratories point to sugars as a key factor in ideal feedstock for biofuels

SOLAR DAILY
A global collaboration to move artificial intelligence principles to practice

Automated technology allows unparalleled space exploration from Moon, to asteroids, and beyond

NTU Singapore scientists develop 'mini-brains' to help robots recognize pain and to self-repair

Robot swarms follow instructions to create art

SOLAR DAILY
California offshore winds show promise as power source

Offshore wind power now so cheap it could pay money back to consumers

SOLAR DAILY
Charging electric cars up to 90% in 6 minutes

Tesla to recall 30,000 cars from China over suspension defects

Tesla profit doubles as car deliveries surge

Tesla to export cars made in China to Europe

SOLAR DAILY
Realistic simulation of plasma edge instabilities in tokamaks

Highview Power and Enlasa to develop giga-scale cryogenic energy storage projects in Latin America

Good vibrations for new energy

LiU researchers first to develop an organic battery

SOLAR DAILY
Russian scientists suggested a transfer to safe nuclear energy

The new heavy isotope mendelevium-244 and a puzzling short-lived fission activity

Framatome launches Framatome Defense to support the French national defense industry

Framatome showcases nuclear technologies at China's first international nuclear exhibition since COVID-19

SOLAR DAILY
Japan PM Suga sets 2050 deadline for carbon neutrality

Xi's big carbon promise on the table as China's leaders meet

Greenpeace knocks ECB for carbon-heavy 'bias'

A renewable solution to keep cool in a warming world

SOLAR DAILY
In new German save-the-forest fight, migrant captain centre stage

NASA supercomputing study breaks ground for tree mapping, carbon research

Laser technology measures biomass in world's largest trees

Unexpectedly large number of trees populate the Western Sahara and the Sahel









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.