Solar Energy News  
SOLAR DAILY
A new modifier increases the efficiency of perovskite solar cells
by Staff Writers
Moscow, Russia (SPX) Feb 12, 2021

Perovskite module prototype

The research team of NUST MISIS has presented an improved structure of perovskite solar cells. Scientists have modified perovskite-based solar cells using MXenes - thin two-dimensional titanium carbides with high electrical conductivity.

The MXenes-based modified cells showed superior performance, with power conversion efficiency exceeding 19% (the reference demonstrated 17%) and improved stabilized power output with respect to reference devices. The results have been published in the Nano energy international scientific journal.

Perovskite solar cells are promising alternative energy technology worldwide. They can be printed on special inkjet or slot die printers with minimal quantity of vacuum processes. This reduces the cost of the device compared to traditional silicon solar cell technology.

Their other advantages are flexibility (the solar cell can be made on substrates of PET a common material for plastic bottles) and compactness. Perovskite solar cells can be mounted on the walls of buildings and curved surfaces of automobile panoramic roofs, receiving independent power supply.

The perovskite module has a sandwich structure: there is a process of collecting electrons between the layers. As a result, the energy of sunlight is converted into electrical energy.

The layers are very thin - from 10 to 50 nanometers, and the "sandwich" itself is thinner than a human hair. The collection of the charge carriers in the solar cells should go with minimal losses during electron transport. The reduction of the such losses in the device will increase the power of the solar cell.

A scientific group of physicists from NUST MISIS and the University of Tor Vergata (Rome, Italy) have shown experimentally that the addition of a small amount of titanium carbide-based MXenes to light-absorbing perovskite layers improves the electronic transport process and optimizes the performance of the solar cell.

The name - MXenes comes from the synthesis process. The material is made by etching and exfoliation of the atomically thin metal carbides pre-coated with aluminum (MAX phases - layered hexagonal carbides and nitrides).

"In this work, we demonstrate a useful role of MXenes doping both for the photoactive layer (perovskite) and for the electron transport layer (fullerenes) in the structure of solar cells based on nickel oxide," said the co-author of the paper, a researcher from the NUST MISIS Laboratory for Advanced Solar Energy, post-graduate student Anastasia Yakusheva.

"On the one hand, the addition of MXenes helps to align the energy levels at the perovskite/fullerene interface, and, on the other hand, it helps to control the concentration of defects in the thin-film device, and improves the collection of photocurrent."

The solar cells developed with the new approach have shown improved characteristics with a power conversion efficiency exceeding 19%. This is 2% more in comparison to the reference devices.

The approach proposed by the developers can be easily scaled to the format of modules and large-area panels. Doping with MXenes does not change the fabrication sequence and integrated only to the initial stage of ink preparation without changes to architecture of the device.

Research paper


Related Links
National University Of Science And Technology MISIS
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Rolling Meadows site now home to Northrop Grumman's largest on-site solar energy system
Rolling Meadows IL (SPX) Feb 10, 2021
Northrop Grumman Corporation's Rolling Meadows site is now host to a new rooftop solar power-generating system, joining the company's other solar power initiatives in Florida, California and Virginia. The Rolling Meadows solar panel system is the largest on-site solar energy installation at a Northrop Grumman facility to date. "With the installation of this new solar panel system, Northrop Grumman is supporting the state of Illinois as it expands its renewable energy use and is taking another mean ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Norwegian fertiliser maker Yara steps into green energy

British Airways eyes greener jet fuel from 2022

Novel photocatalyst effectively turns carbon dioxide into methane fuel with light

Australia supplying wood pellets for the Japanese electricity market

SOLAR DAILY
Machine-learning program imagines a protein's many possible structures

Artificial skin brings robots closer to 'touching' human lives

How modern robots are developed

New AI system uses radio signals to detect a person's emotions

SOLAR DAILY
BP enters UK offshore wind sector

$43 bn deal for 'world's biggest' offshore wind farm in South Korea

Denmark moves forward on North Sea 'energy island'

Magnora enters partnership to establish floating wind company

SOLAR DAILY
Hyundai, Kia deny Apple car talks, sending shares tumbling

Chinese regulators summon Tesla over car security malfunction

Uber posts big loss as pandemic clobbers ridesharing, despite delivery offset

Chip shortage puts the brakes on automakers

SOLAR DAILY
Living bricks can generate energy in the home and wean humanity off fossil fuels

New wearable device converts body heat into electricity

Ballard signs MOU with Global Energy Ventures for fuel cell-powered ship

New fiber optic temperature sensing approach to keep fusion power plants running

SOLAR DAILY
Framatome to provide digital instrumentation and control upgrade at Calvert Cliffs nuclear plant

Framatome's GAIA Enhanced Accident Tolerant Fuel completes first-ever fuel cycle

Optimized LIBS technique improves analysis of nuclear reactor materials

Estonia's geology holds promise for nuclear waste disposal

SOLAR DAILY
Getting to net zero and even negative is surprisingly feasible, and affordable

BlackRock pushes companies to set more ambitious climate targets

Rich nations 'hugely exaggerate' climate finance: study

China to launch carbon emissions trading scheme next month

SOLAR DAILY
NASA satellites help quantify forests' impacts on global carbon budget

US, EU importing potentially illegal wood from Brazil: report

Brazil indigenous leaders sue Bolsonaro for 'crimes against humanity'

Oak trees take root in Iraqi Kurdistan to help climate









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.