Biological material boosts solar cell performance by Staff Writers University Park PA (SPX) Oct 23, 2019
Next-generation solar cells that mimic photosynthesis with biological material may give new meaning to the term "green technology." Adding the protein bacteriorhodopsin (bR) to perovskite solar cells boosted the efficiency of the devices in a series of laboratory tests, according to an international team of researchers. "These findings open the door for the development of a cheaper, more environmentally friendly bioperovskite solar cell technology," said Shashank Priya, associate vice president for research and professor of materials science at Penn State. "In the future, we may essentially replace some expensive chemicals inside solar cells with relatively cheaper natural materials." Perovskite solar cells, named for their unique crystal structures that excel at absorbing visible light, are an area of intense research because they offer a more efficient and less expensive alternative to traditional silicon-based solar technology. The most efficient perovskite solar cells can convert 22 to 23 percent of sunlight to electricity. The researchers found that adding the bR protein to perovskite solar cells improved the devices' efficiency from 14.5 to 17 percent. They reported their findings in the American Chemical Society journal ACS Applied Materials and Interfaces. The research represents the first time scientists have shown that biological materials added to perovskite solar cells can provide a high efficiency. Future research could result in even more efficient bioperovskite materials, the researchers said. "Previous studies have achieved 8 or 9 percent efficiency by mixing certain proteins inside solar cell structures," said Priya, a co-lead author of the study. "But nothing has come close to 17 percent. These findings are very significant." Commercial solar arrays consist of hundreds or thousands of individual solar cells, so even small improvements in efficiency can lead to real savings, according to the researchers.
Mimicking nature "The FRET mechanism has been around for a long time," said Renugopalakrishnan Venkatesan, professor at Northeastern University and Boston Children's Hospital, Harvard University, and co-lead author on the study. "It seems to be the basis of photosynthesis and can be found in technologies like the wireless transfer of energy, and even in the animal world as a mechanism for communication. We are using this mechanism to try to create a world of bio-inspired systems that have the potential to surpass either inorganic or organic molecules." The bR proteins and perovskite materials have similar electrical properties, or band gaps. By aligning these gaps, the scientists hypothesized they could achieve a better performance in perovskite solar cells through the FRET mechanism. "Solar cells work by absorbing light energy, or photon molecules and creating electron-hole pairs," said Subhabrata Das, who participated in the research while a doctoral student at Columbia University. "By sending the electrons and holes in opposite directions, solar cells generate an electrical current that's turned into electricity." However, a certain percent of electron-hole pairs recombine, reducing the amount of current produced. Mixing the bR protein into perovskite solar cells helped electron-hole pairs better move through the devices, reducing recombination losses and boosting efficiency, the scientists said. The findings could potentially have larger consequences, leading to the design of other hybrid devices in which artificial and biological materials work together, according to the researchers.
Croissant making inspires renewable energy solution London, UK (SPX) Oct 19, 2019 The art of croissant making has inspired researchers from Queen Mary University of London to find a solution to a sustainable energy problem. Croissants are made by pressing and folding dough to create a layered pastry. The researchers applied this technique to a dielectric capacitor, which is a device that stores energy like a battery. By pressing and folding a polymer film capacitor - a capacitor with an insulating plastic film - they were able to store 30 times more energy than the best-p ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |