Solar Energy News
SOLAR DAILY
Boosting solar cell performance with a transparent spectral converter
Applying a transparent Pr3+/Eu3+-doped glass-ceramic layer on top of a photovoltaic cell simultaneously protects it from damaging UV light and converts that UV radiation to visible light, thereby enhancing the light-to-energy conversion efficiency.
Boosting solar cell performance with a transparent spectral converter
by Staff Writers
Washington DC (SPX) Jan 04, 2024

Over the past decade, photovoltaic cells (PCs) have garnered much attention worldwide as promising sources of renewable energy. However, PCs still have not achieved light-to-electricity conversion efficiencies high enough to gain widespread adoption, and scientists are on the lookout for new materials and designs with better performance.

Two of the most actively studied types of PCs are perovskite PCs and amorphous-silicon carbide (a-SiC:H) PCs, each with their own set of limitations. Perovskite PCs suffer from two major setbacks: first, even though solar radiation covers wavelengths that go from near-infrared all the way up to ultraviolet (UV) light, perovskite PCs use only a small portion of this spectrum, leading to low energy conversion efficiency. Second, they are vulnerable to photo-degradation from exposure to high-intensity UV light. In contrast, a-SiC:H PCs cannot effectively harvest UV light owing to a mismatch between the spectral profile of sunlight and the spectral response of a-SiC:H materials.

But what if these problems could be solved simply by applying a special transparent layer on top of the PC? In a recent study published in the Journal of Photonics for Energy, a research team including Dr. Pei Song from Shanghai University of Engineering Science, China, developed a novel solar spectral converter using a GdPO4 glass-ceramic (GC) material doped with praseodymium (Pr) and europium (Eu) ions. This technology could lead to notable boosts in performance and applicability in solar cells.

The main purpose of GdPO4-GC:Eu3+/Pr3+ is to absorb UV photons from solar radiation and re-emit them as visible light. This is possible thanks to the efficient energy transfer that happens between the ions in the material. When a UV photon hits a Pr3+ ion, it generates an excited electronic state. This accumulated energy has a high chance of being transferred to a Gd3+ ion, which releases some of it before transferring the rest to an Eu3+ ion. As a result, excited electronic states in the Eu3+ ion undergo a down transition to lower energy states, emitting visible light.

Several experiments confirmed that the Gd3+ ions act as bridges between Pr3+ and Eu3+ ions in these energy transitions. Thus, a thin transparent GdPO4-GC:Eu3+/Pr3+ layer applied onto a PC not only shields it from UV photons but also feeds it additional light. Additionally, this protective effect helps prevent photo-degradation in perovskite PCs. Meanwhile, in both perovskite and a-SiC:H PCs, the spectral conversion layer helps the overall system use energy from solar radiation more efficiently by making it "sensitive" to UV photons, which would otherwise be wasted.

Notably, the proposed GdPO4-GC:Eu3+/Pr3+ material is straightforward to synthesize via a conventional melting quenching process. Moreover, since the material is also remarkably stable, it appears promising as a protective layer for space-borne PCs, such as those used in space stations. "Nowadays, expanding space stations require more power support and need high-performance PCs. By covering the top side of a PC with the proposed spectral conversion material and using appropriate encapsulation and sealing technology, we can ensure very low humidity levels and efficient UV recycling," explains Song. "In addition, GC materials have a hard texture, so they can protect PCs from being hit by tiny floating debris in space."

More studies will be needed to further improve the efficiency of PCs using doped GC materials as spectral converters. The researchers note that future work could focus on improving cost-effectiveness by adjusting doping concentrations and optimizing the thickness of the protective layer. "With potential applications in both terrestrial and space PCs, the development of spectral downshifting Pr3+/Eu3+ co-doped glass-ceramics might open up new avenues to achieve better performance in photovoltaic devices," concludes Song.

Let us hope that solar energy will grow to become not only an eco-friendly alternative to fossil fuels but also the energy source of the future!

Research Report:Ultraviolet-wavelength driven solar spectral converter for photovoltaic cell application

Related Links
SPIE--International Society for Optics and Photonics
All About Solar Energy at SolarDaily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SOLAR DAILY
Portugal's renewable power generation hit record level in 2023
Lisbon (AFP) Jan 2, 2024
Portugal obtained a record quantity of its electricity from clean sources in 2023, with renewables accounting for 61 percent of power use, national grid operator REN said on Tuesday. Wind provided 25 percent of the electricity consumed in Portugal last year, ahead of hydropower (23 percent), solar photovoltaic (7.0 percent) and biomass (6.0 percent), REN said. The strongest growth was in hydropower. Output rose 70 percent as the sector bounced back from the 2022 drought. Photovoltaic ros ... read more

SOLAR DAILY
Nigerians look to biofuel as cost of cooking gas soars

Chinese company gives leftover hotpot oil second life as jet fuel

Cheap and efficient ethanol catalyst from laser-melted nanoparticles

UK permits 'world-first' flight powered by sustainable fuels

SOLAR DAILY
Dynamic Point-Pixel Feature Alignment Network: A Leap Forward in 3D Object Detection Technology

New soft robots roll like tires, spin like tops and orbit like moons

US bans pharmacy Rite Aid from facial recognition use

OpenAI releases guidelines to gauge 'catastrophic risks' of AI

SOLAR DAILY
Danish firm to build huge wind farm off UK

UK unveils massive news windfarm investment by UAE, German firms

Wind and solar projects can profit from bitcoin mining

Winds of change? Bid to revive England's onshore sector

SOLAR DAILY
Honda unveils futuristic EV designs to hit US market in 2026

Uber, Kia sign electric vehicle partnership

China's Evergrande says head of EV arm detained

Tesla to recall 1.6 mn cars in China to fix steering software

SOLAR DAILY
KULR secures contract with major space exploration firm for advanced battery safety solutions

Korean Fusion Experiment, KSTAR, Enhances Capability with New Tungsten Divertor

Solid state battery design charges in minutes, lasts for thousands of cycles

The first battery prototype using hemoglobin is developed

SOLAR DAILY
EDF to invest 1.3 bn in UK nuclear power stations

UK unveils plans for 'biggest nuclear power expansion in 70 years'

Three-metre tsunami recorded at Japan nuclear plant after quake

UK announces Europe's first high-tech uranium fuel plant

SOLAR DAILY
US reduces emissions in 2023 - but not fast enough: report

Private sector funding key to climate transition, World Bank chief says

China, climate in focus at Japan-ASEAN summit

'Where is the money?' COP28 deal throws spotlight on funding

SOLAR DAILY
Deforestation in Brazilian Amazon halved in 2023

A new map showing all above-ground biomass in the Brazilian Amazon

Drones help solve forest carbon capture riddle

Minding the gap on tropical forest carbon

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.