Solar Energy News  
Cheap And Efficient Solar Power And How To Get There

The experts disagree on how much investment is needed to bring about the breakthroughs required to make solar technology widespread and cheap. But they do agree that federal dollars alone aren't enough, there has to be more investment from the manufacturing sector.
by Staff Writers
Amherst MA (SPX) Apr 10, 2007
If solar power is going to play a significant role in the energy equation of the future, there must be advances in technologies to store that power and more investment by manufacturers, concludes a new federally funded study by University of Massachusetts Amherst scientist Erin Baker.

The report by Baker and colleagues explores the viability of sun-fueled technologies through a combination of evaluations by experts and economic modeling, allowing the researchers to look at solar power's role in the electricity sector in 15-year chunks through 2095.

Baker has been invited to submit the article to Energy Economics as part of a special issue on Technological Change and Uncertainty in Environmental Economics. It is the first in a series; future reports will assess technologies that harvest wind, biofuels and carbon capture.

The U.S. Department of Energy awarded $347,000 to Baker's team last year to investigate the costs and benefits associated with investing in alternative energies.

Jeffrey Keisler of UMass Boston, and Haewon Chon, a Ph.D. student at the University of Maryland working with the Joint Global Change Research Institute collaborated with Baker.

The scientists approached their analysis of sun-fueled technologies from the framework of a research and development portfolio. They analyzed the risks of certain investments, and solicited advice from experts to identify the key technological breakthroughs in solar technology that would lower its costs. They also asked what hurdles might make it hard to move the technology from the lab to production, and the probability of success, given a funding trajectory. The researchers then fed that information into a model that allowed them to play out various investment scenarios.

The model incorporates information about land use and the energy sector in 14 world regions as well as information on a range of electricity technologies including nuclear power, fossil fuels, biofuels, and solar and wind power. It allows the researchers to look forward in 15-year intervals to 2095, and to ask what's needed to ensure widespread use of cheap solar power, and how much that would reduce emissions.

"We asked what if technologies that capture solar power were efficient enough to supply the needs of a house through a solar shingle roof," says Baker. "What breakthroughs would be needed for the solar cells to last the lifetime of the roof, and cost as much or less than fossil fuel-based electricity. And if that technology is to become a reality, what investments are required now."

Several of their findings bear noting, says Baker. First, even if there are research breakthroughs that made the costs of photovoltaics comparable to or less than that of fossil fuels-roughly 3 cents per kilowatt hour by 2050-there would still be a limited impact on emissions unless the advances are combined with improvements in low-cost storage.

"The development of complimentary technologies, in particular low-cost storage of electricity, is critical," says Baker. Current technologies do not have good, cheap storage options, and putting all the power into the grid may make it unstable, she says.

But when technological breakthroughs are combined with improvements in storage, using solar technology could lower emissions by 20 percent at no additional cost to the economy-taking a serious bite out of the carbon problem.

Baker notes another finding: the experts disagree on how much investment is needed to bring about the breakthroughs required to make solar technology widespread and cheap. But they do agree that federal dollars alone aren't enough, there has to be more investment from the manufacturing sector.

This suggests that if policy makers want to increase the probability of having the needed technological breakthroughs, they need to encourage investment from the manufacturing sector-this could happen in the form of subsidies, tax breaks or other regulations to increase demand, as well as through support for conferences and public-private collaborations, says Baker.

While the experts disagreed in some areas, they agreed on the order of investment: focus first on getting power from the new inorganic materials that show promise but are far from viable for large scale production.

Then focus on purely organic cells with organic semiconductors; these hold the promise of low costs but still haven't achieved high levels of efficiency and face serious stability problems. And lastly investigate the so-called third-generation cells, which use entirely different technology but may ultimately yield much more power.

Baker acknowledges that the study is preliminary, but she's pleased that the analytic method, which is commonly applied in industry, can be applied at the public policy level.

"Our analysis should be seen as a tool for informing policy makers on how to balance research and development investments among the various alternative energy technologies," says Baker. "We hope it takes some of the speculation out of how to craft good climate change policies."

Related Links
University of Massachusetts Amherst
Powering The World in the 21st Century at Energy-Daily.com
Our Polluted World and Cleaning It Up
China News From SinoDaily.com
Global Trade News
The Economy
All About Solar Energy at SolarDaily.com
Civil Nuclear Energy Science, Technology and News
All About Solar Energy at SolarDaily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


GE Delivers One Of World's Largest Solar Power Plants Using PowerLight's Technology
Serpa, Portugal (SPX) Mar 30, 2007
Spread across a hillside pasture amid olive trees, 52,000 shimmering photovoltaic modules in one of the world's largest solar power plants have begun generating enough electricity for 8,000 homes, GE, PowerLight Corp. and Catavento SA have announced.







  • Russia Set To Overhaul Its Arctic Fleet
  • Iran Close To Deal With Russia To End Nuclear Delays
  • Weighing The Financial Risks Of Nuclear Power Plants
  • Alstom And Atomenergomash Launch Joint Energy Venture In Russia

  • Want To Monitor Climate Change Pick Up A Penguin
  • US Pollution Cop Defends Bush Greenhouse Gas Record
  • Trans Atlantic Rift Not That Great On Global Warming
  • Environmentalists Hail US Supreme Court Ruling As Bush Says Issue Serious

  • Anthropologist Finds Earliest Evidence Of Maize Farming In Mexico
  • Boost In Rice Production To Avoid Food Shortages In Indonesia
  • Wine Industry Faces Major Challenge From Global Warming
  • Debating The Impact Of GM Crops 10 Years On

  • Trends In Bird Observations Reveal Changing Fortunes For Different Species
  • Tibetan Microbe Mats
  • Researchers Help Find Master Switch In Plant Communication
  • How Arthropods Survive The Cold Using Natural Anti-Freeze

  • ATK Highlights Progress On Ares I Crew Launch Vehicle
  • Anomalous Behaviour Affects Firing Test Of Vega Zefiro 9 Motor
  • Iowa State To Unveil The Most Realistic Virtual Reality Room In The World
  • Boeing Announces Industry Team For Ares I Crew Launch Vehicle Upper Stage Production



  • High-Resolution Images Herald New Era In Earth Sciences
  • ISRO To Focus On Societal Projects
  • USGS Defines Roles For New Satellite Mission
  • ESA Signs Arrangement With New Zealand On Tracking Station

  • United Space Alliance Brings New Innovations to Future Space Operations
  • ESA And NASA Extend Ties With Major New Cross-Support Agreement
  • Cornell Wins A NASA Launch For Nano Satellite
  • Plastic With Changeable Conductivity Developed By Chemical Engineer

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement