Chemists advance solar energy storage aimed at global challenges by Staff Writers Logan UT (SPX) Jul 27, 2020
Increasing demand for electrification in rural areas poses challenges, but also creates opportunities for development of decentralized electrification systems. Compared with conventional electrical grids based on large, centralized power generation stations commonly used in developed countries, a decentralized approach offers lower capital cost, a smaller footprint and nimble deployment. Utah State University chemists Tianbiao "Leo" Liu, Bo Hu and Maowei Hu are among authors of a paper published July 13, 2020, in 'Nature Materials,' describing a solar flow battery design that combines energy conversion and storage in one unit. Collaborators on the project included Wenjie Li and Jin Song of the University of Wisconsin-Madison, Anita Ho-Baillie of the University of New South Wales and University of Sydney in Australia, Jr-Hau He of King Abdullah University of Science and Technology in Saudi Arabia and the City University of Hong Kong. "This technology could expedite electrification in remote locations," says Liu, assistant professor in USU's Department of Chemistry and Biochemistry, whose participation in the research was supported by a National Science Foundation CAREER grant he received in 2019. The design, he says, integrates photoelectrochemical solar cells with aqueous organic redox flow batteries (AORFBs). "Each of these technologies offers advantages," Liu says. "The photovoltaic cells convert sunlight into electricity, while the flow batteries can be charged by the solar cells to store solar energy simultaneously. The integrated design produces very high voltage and very stable cycling." The technology builds on research efforts Liu's lab reported on AORFBs in a 2018 paper in ChemComm. "Battery storage of environmentally friendly energy resources, such as solar and wind, presents challenges because of unstable grid energy, heavy cycling that requires frequent charging and discharging, as well as irregular, full recharging," Liu says. "In addition, we need energy storage electrolyte solutions that are safe and affordable. AORFBs show great promise in fulfilling these needs." Further, the Liu Lab is designing AORFBs for integrated saltwater desalination and energy storage, which the team reported in the April 27, 2020 online edition of Advanced Functional Materials. The research was supported by a Utah Science Technology and Research (USTAR) Initiative University Technology Acceleration Grants (UTAG) grant. "Combining water desalination and energy storage into a bifunctional device offers the opportunity to address not one, but two growing global issues from one hardware installation," Liu says.
Cooling mechanism increases solar energy harvesting for self-powered outdoor sensors New York NY (SPX) Jul 13, 2020 Sensors placed in the environment spend long periods of time outdoors through all weather conditions, and they must continuously power themselves in order to collect data. Many, like photovoltaic cells, use the sun to produce electricity, but powering outdoor sensors at night is a challenge. Thermoelectric devices, which use the temperature difference between the top and bottom of the device to generate power, offer some promise for harnessing naturally occurring energy. But, despite being more ef ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |