Controlling perovskite ions' composition paves the way for device applications by Staff Writers Kobe, Japan (SPX) Nov 16, 2020
Hybrid organic-inorganic perovskites (*1) have received much attention as potential next generation solar cells and as materials for light-emitting devices. Kobe University's Associate Professor TACHIKAWA Takashi (of the Molecular Photoscience Research Center) and Dr. KARIMATA Izuru (previously a graduate student engaged in research at the Graduate School of Science) have succeeded in completely substituting the halide ions of perovskite nanocrystals while maintaining their morphology and light-emitting efficiency. Furthermore, by using techniques such as single-particle photoluminescence imaging, the researchers were able to understand the momentary changes in light emission and the crystal structure, which in turn enabled them to develop a principle for controlling ion composition. It is expected that these research results will contribute towards enabling the synthesis of perovskites of varying compositions and advancing the development of devices which utilize them. In addition, it is hoped that the flexibility of perovskite structures can be harnessed, allowing for them to be applied to devices and the creation of new functional materials. These findings were published in the German academic journal 'Angewandte Chemie International Edition' on October 19, 2020.
Research Background However, the halide ions inside the crystals are known to move around even at room temperature, and this high flexibility causes issues such as reductions in both synthesis reproducibility and device durability.
Research Methodology It is important to know what kind of reaction will occur inside the crystals in order to develop synthesis techniques. To understand this, the researchers used a fluorescence microscope to observe how each individual nanocrystal was reacting. From this observation, they understood that once the red light emitted by the CH3NH3PbI3 had completely disappeared, the green light originating from the CH3NH3PbBr3 was suddenly generated after an interval of 10s to 100s of seconds (upper portion of Figure 2). Based on the results of structural analysis using an x-ray beam, it was revealed that Br- ions replaced I- ions inside the crystal structure while a bromide-rich layer formed on the surface. Afterwards, the bromide on the surface layer gradually moved into the inner regions. It is believed that the red light emissions became unobservable because the inner regions of the crystal structure were partially disordered during the ion transition, which led to the loss of energy necessary for light emission (bottom of Figure 2). Subsequently, CH3NH3PbBr3 crystal nuclei formed inside the nanocrystal particle and a cooperative transition to the green light generating state occurred. From these results, it can be said that temporally separating the crystal structure transitions and the subsequent restructuring (that occurs on a nanometer scale) is one of the keys to the successful, precise synthesis of organic lead halide perovskites.
Further Developments Although researchers have a negative impression of organic halide perovskites' flexibility, it is hoped that this characteristic could be exploited and applied to the development of new materials and devices that can react to the environment and external stimuli.
Research Report: "In Situ Exploration of the Structural Transition during Morphology- and Efficiency-Conserving Halide Exchange on a Single Perovskite Nanocrystal"
New green materials could power smart devices using ambient light London, UK (SPX) Nov 16, 2020 We are increasingly using more smart devices like smartphones, smart speakers, and wearable health and wellness sensors in our homes, offices, and public buildings. However, the batteries they use can deplete quickly and contain toxic and rare environmentally damaging chemicals, so researchers are looking for better ways to power the devices. One way to power them is by converting indoor light from ordinary bulbs into energy, in a similar way to how solar panels harvest energy from sunlight, known ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |