Daylight damage-saving time by Staff Writers Kanazawa, Japan (SPX) Dec 03, 2019
Researchers at Kanazawa University performed a detailed investigation of the molecular mechanisms by which organic solar cells suffer damage as they are exposed to sunlight. This research has important implications for developing next-generation solar sheets that combine high efficiency, low cost, and long device lifetimes. Solar power represents an important element of future renewable energy solutions. Historically, solar panels have tended to be inefficient or else too expensive for most homeowners to consider installing. A new class of solar cells that utilizes layers of carbon-based polymers offers efficiency of up to 10% - which is considered the minimum for practical use - at an affordable price point. The primary remaining obstacle to wide adoption of these new photovoltaics is the short lifetime of these devices because cumulative damage from the sun tends to erode their performance. Owing to the multilayer nature of the devices, it is often difficult to identify molecular mechanism by which this degradation of efficacy occurs over time. Now, based on the results of current-voltage curves, impedance spectroscopy, and UV-VIS spectrophotometry, a research team at Kanazawa University has determined an important factor that can cause reduced performance. Similar to the way your carbon-based skin cells can get a nasty sunburn from the sun's ultraviolet light after a day at the beach, the researchers found that the fragile organic molecules in the semiconducting layer can be damaged from exposure. "We found that damage from UV light increased the electrical resistance of the organic semiconductor layer," first author Makoto Karakawa says. This led to reduced current flow and thus an overall decrease in efficiency. Using a method known as matrix assisted laser desorption/ionization time-of-flight, the researchers determined the likely degradation products from solar damage. When some sulfur atoms in the materials get replaced by oxygen atoms from the atmosphere, the molecules no longer function as intended. "While new organic semiconductor materials have allowed us to drastically increase overall efficiency, we found that they tend to be more fragile to UV damage," senior author Kohshin Takahashi explains. Based on this understanding, it may be possible to design more robust devices that still maintain their high energy conversion rate, which is an important step to making solar an even larger portion of renewable energy generation.
JinkoSolar Supplies 300MW of High-Efficiency Tiger Modules for China Ultra-High Voltage Demonstration Plant Shanghai, China (SPX) Nov 30, 2019 JinkoSolar Holding Co., Ltd. has supplied 300MW of its high energy density Tiger panels for an ultra-high voltage demonstration plant in Qinghai Province, China. The Qinghai Ultra High Voltage Demonstration Plant is the first ground mounted utility project in the world to install JinkoSolar's Tiger panels which have 20.4% module efficiency. JinkoSolar's efficient Tiger series deliver value as a result of a unique tiling ribbon that improves reliability and efficiency, and outperforms conventional ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |