Development of new photovoltaic commercialization technology by Staff Writers Daegu, South Korea (SPX) Apr 16, 2020
A technology to further accelerate the commercialization of Colloidal Quantum Dot(CQD) Photovoltaic(PV) devices, which are expected to be next-generation photovoltaic devices, has been developed. On the 30th (Monday), DGIST announced that a research team of Professor Jongmin Choi from the Department of Energy Science and Engineering and Professor Edward H. Sargent from the University of Toronto has identified the cause of the performance degradation in CQD PV devices and developed a material processing method capable of stabilizing the performance of the devices. Quantum dots have excellent light absorbance and are capable of absorbing light over a wide range of wavelengths. Hence, they have gained expectation as a key material for the next generation photovoltaic devices. In particular, quantum dots are light, flexible, and involve low processing costs; therefore, they can be replaced by supplementing the drawbacks of silicon solar cells currently in use In this regard, several studies on photoelectric conversion efficiency (PCE) have been conducted with the aim of improving the performance of CQD PV devices. However, very few studies have focused on improving the stability of these devices, which is necessary for the commercialization process. In particular, few studies have used the CQD PV device at the Maximum Power Point, which is the actual operating environment of PV devices. For this purpose, the research team investigated the causes of performance degradation by continuously exposing them to illumination and oxygen for long periods of time, similar to the actual operating conditions, in order to improve the stability required for the actual commercialization stage of CQD PV devices. As a result, it was identified that the iodine ions on the surface of the quantum dot solids were removed via oxidation, resulting in the formation of an oxide layer. This oxide layer resulted in the deformation of the quantum dot structure, thereby decreasing the efficiency of the device. The research team developed a ligand substitution method with potassium(K) to improve the low efficiency of the device. Ligand refers to the ions or molecules that bond to the central atom of a complex similar to a branch. Here, potassium iodide, which prevents the oxidation of iodine, was deployed on the surface of quantum dot solids to undergo a substitution process. As a result of application of the invented method, the device maintained its continuous performance rate of over 80%, which is its initial efficiency rate, for 300 hours. This number is a figure that is higher than premeasured performance thus far. Professor Jongmin Choi from DGIST said, "The study is to demonstrate that the CQD PV device can operate more stably in the actual operating environment," and further commented, "The results are expected to further accelerate the commercialization of the CQD PV device. " The results of this study were published on February 20, in a world-leading, international academic journal Advanced Materials (IF = 25.809). Professor Jongmin Choi from the Energy Science and Engineering Department of DGIST participated in this study as the lead author.
Solar power plants get help from satellites to predict cloud cover Washington DC (SPX) Apr 15, 2020 The output of solar energy systems is highly dependent on cloud cover. While weather forecasting can be used to predict the amount of sunlight reaching ground-based solar collectors, cloud cover is often characterized in simple terms, such as cloudy, partly cloudy or clear. This does not provide accurate information for estimating the amount of sunlight available for solar power plants. In this week's Journal of Renewable and Sustainable Energy, from AIP Publishing, a new method is reported for es ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |