Efficient and durable perovskite solar cell materials by Staff Writers Pohang, South Korea (SPX) Nov 27, 2020
Perovskite solar cells are attracting attention as the next-generation solar battery material thanks to their low processing cost and excellent photovoltaic quality. However, it is difficult to commercialize them because their key material - perovskite - is vulnerable to light and moisture. Recently, a POSTECH research team has developed an organic spacer molecular additive that can improve both the photoelectric efficiency and stability of perovskite. A POSTECH research team led by Professor Kilwon Cho and Ph.D. candidate Sungwon Song of the Department of Chemical Engineering has succeeded in fabricating perovskite solar cells that are highly efficient and stable by drastically reducing the concentration of internal defects in the crystals as well as increasing the moisture resistance of perovskite by introducing a new organic spacer molecule additive in the perovskite crystal. The study was published as a cover paper in the latest issue of Advanced Energy Materials, one of the most authoritative journals in the field of energy. By adding organic spacer ions to solve the problem, the research team developed a hybrid perovskite photovoltaic layer where two- and three-dimensional perovskite coexist. Organic spacers create two-dimensional perovskite structures on the surface of 3D perovskite crystals. These structures act as stabilizing layer that increases resistance to moisture due to its property of repelling water. In addition, it was discovered for the first time that this newly introduced organic spacer minimizes mechanical stress of the two- and three-dimensional perovskite crystal interfaces, thus promoting the nuclear production and growth of the 3D perovskite crystal. As a result, the internal defects of the photoreactive layer - the 3D perovskite crystals - have been dramatically reduced. The solar cells developed by the research team achieved 21.3 % efficiency and secured moisture stability to maintain more than 80% of their initial efficiency even after 500 hours under 60% of relative humidity conditions. "This study has presented a new perspective on organic spacer molecular design for the realization of high performing and stable perovskite solar cells," remarked Professor Kilwon Cho who led the study. He added, "It is anticipated to be a source technology that can contribute to the commercialization of perovskite solar cell technology."
Trina Solar and Tongwei join forces to further upgrade the 210 integrated industrial chain Zurich, Switzerland (SPX) Nov 20, 2020 Trina Solar reports it's agreement with Tongwei Co., Ltd. has reached a new level, with three investments and a long term procurement cooperation framework agreement now in place. Gao Jifan, Chairman of Trina Solar, said that the two leading companies focused on 210 products and cooperated to make the 210 industrial ecosystem stronger and bigger. Joint ventures and cooperation among strong players, who complement each other, have bigger advantages than simple vertical integrations within themselve ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |