Getting more heat out of sunlight by David L. Chandler for MIT News Boston MA (SPX) Jul 08, 2019
A newly developed material that is so transparent you can barely see it could unlock many new uses for solar heat. It generates much higher temperatures than conventional solar collectors do - enough to be used for home heating or for industrial processes that require heat of more than 200 degrees Celsius (392 degrees Fahrenheit). The key to the process is a new kind of aerogel, a lightweight material that consists mostly of air, with a structure made of silica (which is also used to make glass). The material lets sunlight pass through easily but blocks solar heat from escaping. The findings are described in the journal ACS Nano, in a paper by Lin Zhao, an MIT graduate student; Evelyn Wang, professor and head of the Department of Mechanical Engineering; Gang Chen, the Carl Richard Soderberg Professor in Power Engineering; and five others. The key to efficient collection of solar heat, Wang explains, is being able to keep something hot internally while remaining cold on the outside. One way of doing that is using a vacuum between a layer of glass and a dark, solar-absorbing material. This setup is used in many concentrating solar collectors, but it's relatively expensive to install and maintain. There has been great interest in finding a less expensive, passive system for collecting solar heat at the higher temperature levels needed for space heating, food processing, or many industrial processes. Aerogels, a kind of foam-like material made of silica particles, have been developed for years as highly efficient and lightweight thermal insulating materials, but they have generally had limited transparency to visible light, with around a 70 percent transmission level. Wang says making aerogels that are transparent enough to work for solar heat collection was a long and difficult process involving several researchers for about four years. But the result is an aerogel that lets through over 95 percent of incoming sunlight while maintaining the material's highly insulating properties. The key is in the precise ratios of the different chemicals used to create the aerogel, which is made by mixing a catalyst with a silicon-containing compound in a liquid solution, forming a kind of wet gel, and then drying it to get all the liquid out, leaving a matrix that is mostly air but retains the original mixture's structure. Producing a mix that chemically reacts much more quickly than those in conventional aerogels, they found, resulted in a gel with smaller pore spaces between its grains, and that therefore scattered the light much less. In tests on a rooftop on the MIT campus, a passive device consisting of a solar-absorbing dark material covered with a layer of the new aerogel was able to reach and maintain a temperature of 220 C, in the middle of a Cambridge winter when the outside air was below 0 C. Such high temperatures have previously only been practical by using concentrating systems, with mirrors to focus sunlight onto a central line or point, but this system requires no concentration, making it simpler and less costly. That could potentially make it useful for a wide variety of applications that require higher levels of heat. For example, simple flat rooftop collectors are often used for domestic hot water, producing temperatures of around 80 C. But the higher temperatures enabled by the aerogel system could make such simple systems usable for home heating as well. Large-scale versions could be used to provide heat for a wide variety of applications in chemical, food production, and manufacturing processes. Zhao describes the basic function of the aerogel layer as "like a greenhouse effect. The material we use to increase the temperature acts like the Earth's atmosphere does to provide insulation, but this is an extreme example of it." For most purposes, the passive heat collection system would be connected to pipes containing a liquid that could circulate to transfer the heat to wherever it's needed. Alternatively, Wang suggests, for some uses the system could be connected to heat pipes, devices that can transfer heat over a distance without requiring pumps or any moving parts. Because the principle is essentially the same, an aerogel-based solar heat collector could directly replace the vacuum-based collectors used in some existing applications, providing a lower-cost option. The materials used to make the aerogel are all abundant and inexpensive; the only costly part of the process is the drying, which requires a specialized device called a critical point dryer to allow for a very precise drying process that extracts the solvents from the gel while preserving its nanoscale structure. Because that is a batch process rather than a continuous one that could be used in roll-to-roll manufacturing, it could limit the rate of production if the system is scaled up to industrial production levels. "The key to scaleup is how we can reduce the cost of that process," Wang says. But even now, a preliminary economic analysis shows that the system can be economically viable for some uses, especially in comparison with vacuum-based systems.
Surrey researchers clear runway for tin based perovskite solar cells Guildford UK (SPX) Jul 10, 2019 Researchers at the University of Surrey believe their tin based perovskite solar cell could clear the runway for solar panel technology to take off and help the UK reach its 2050 carbon neutral goal. As countries look to get to grips with climate change, solar cell technology is rapidly growing in popularity as an environmentally friendly energy alternative. Most commercial solar panels use silicon as the light absorber, which makes the panels rigid, heavy and costly. Perovskites - a relativ ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |